Abstract:
A method for manufacturing a MEMS double-layer suspension microstructure comprises steps of: forming a first film body (310) on a substrate (100), and a cantilever beam (320) connected to the substrate (100) and the first film body (310); forming a sacrificial layer (400) on the first film body (310) and the cantilever beam (320); patterning the sacrificial layer (400) located on the first film body (310) to manufacture a recessed portion (410) used for forming a support structure (520), the bottom of the recessed portion (410) being exposed of the first film body (310); depositing a dielectric layer (500) on the sacrificial layer (400); patterning the dielectric layer (500) to manufacture a second film body (510) and the support structure (520), the support structure (520) being connected to the first film body (310) and the second film body (510); and removing the sacrificial layer (400) to obtain the MEMS double-layer suspension microstructure.
Abstract:
The invention relates to a method (1) for producing a silicon-metal composite micromechanical part, combining DRIE-type and LIGA-type processes. The invention also relates to a micromechanical part (51) comprising a layer containing a silicon part (53) and a metal part (41) in such a way as to form a composite-type micromechanical part (51). The invention can be used in the field of timekeeping movements.
Abstract:
L'invention se rapporte à un procédé de fabrication (1) d'une pièce de micromécanique (51) composite silicium - métal combinant des processus du type DRIE et LIGA. L'invention se rapporte également à une pièce de micromécanique (51) comprenant une couche dans laquelle une partie (53) est en silicium et une autre (41) en métal afin de former une pièce de micromécanique (51) du type composite. L'invention concerne le domaine des mouvements horlogers.
Abstract:
Some embodiments of the present invention provide processes and apparatus for electrochemically fabricating multilayer structures (98) (e.g. mesoscale or microscale structures) with improved endpoint detection and parallelism maintenance for materials (e.g. layers) that are planarized during the electrochemical fabrication process. Some methods involve the use of a fixture during planarization that ensures that planarized planes of material are parallel to other deposited planes within a given tolerance. Some methods involve the use of an endpoint detection fixture (292, 294, 296, 298) that ensures precise heights of deposited materials relative to an initial surface of a substrate (82), relative to a first deposited layer, or relative to some other layer formed during the fabrication process. In some embodiments planarization may occur via lapping while other embodiments may use a diamond fly cutting machine (408).
Abstract:
The present invention relates to a process for forming microstructures on a substrate. A plating surface is applied to a substrate. A first layer of photoresist is applied on top of the plating base. The first layer of photoresist is exposed to radiation in a pattern to render the first layer of photoresist dissolvable in a first pattern. The dissolvable photoresist is removed and a first layer of primary metal is electroplated in the area where the first layer of photoresist was removed. The remainder of the photoresist is then removed and a second layer of photoresist is then applied over the plating base and first layer of primary metal. The second layer of photoresist is then exposed to a second pattern of radiation to render the photoresist dissolvable and the dissolvable photoresist is removed. The second pattern is an area that surrounds the primary structure, but it does not entail the entire substrate. Rather it is an island surrounding the primary metal. The exposed surface of the secondary metal is then machined down to a desired height of the primary metal. The secondary metal is then etched away.
Abstract:
The invention concerns various embodiments directed to various microdevices, including sensors, actuators, valves, scanning mirrors, accelerometers, switches, and the like. In some embodiments the devices are formed via electrochemical fabrication (EFAB tm ). In particular, the invention concerns a microdevice comprising an electrostatically actuated micro-mirror scanning system comprising contoured electrodes that allow a reduced drive voltage without hindering mirror movement.
Abstract:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
Abstract:
A process for forming graphene, includes: depositing at least a first and a second metal onto a surface of silicon carbide (SiC), and heating the SiC and the first and second metals under conditions that cause the first metal to react with silicon of the silicon carbide to form carbon and at least one stable silicide. The corresponding solubilities of the carbon in the stable silicide and in the second metal are sufficiently low that the carbon produced by the silicide reaction forms a graphene layer on the SiC.
Abstract:
A process for forming graphene, including : depositing at least two metals onto a surface of silicon carbide (SiC), the at least two metals including at least one first metal and at least one second metal; and heating the SiC and the first and second metals under conditions that cause the at least one first metal to react with silicon of the silicon carbide to form carbon and at least one stable silicide, and the corresponding solubilities of the carbon in the at least one stable silicide and in the at least one second metal are sufficiently low that the carbon produced by the silicide reaction forms a graphene layer on the SiC.
Abstract:
A device with multiple encapsulated functional layers, includes a substrate, a first functional layer positioned above a top surface of the substrate, the functional layer including a first device portion, a first encapsulating layer encapsulating the first functional layer, a second functional layer positioned above the first encapsulating layer, the second functional layer including a second device portion, and a second encapsulating layer encapsulating the second functional layer.