Abstract:
There is provided a substance detecting device emits first invisible light to the inside and the outside of a detection region of a substance, changes an emitting direction of the first invisible light inside and outside the detection region, receives third invisible light which is passing light of the first invisible light through the reference cell in which a detection target substance is stored, outside of the detection region, and adjusts a temperature of the first invisible light and controls the wavelength of the first invisible light based on the wavelength characteristics of the third invisible light.
Abstract:
A detector apparatus is provided and includes a collector having access to a sample of a gaseous fluid and a tester coupled to and disposed remotely from the collector. The tester includes a test chamber into which a sample is directed from the collector, an excitation element to excite the sample in the test chamber and a spectrum analyzing device coupled to the test chamber to analyze the excited sample for evidence of a concentration of particles of interest in the gaseous fluid exceeding a threshold concentration. The threshold concentration is defined in accordance with a type of the particles of interest and a residence time of the sample.
Abstract:
A light detection device 1A includes a Fabry-Perot interference filter 10, a light detector 3, a spacer 4 that has a placement surface on which a portion outside a light transmission region 11 in a bottom surface of the interference filter 10 is placed, and an adhesive member 5 that adheres the interference filter 10 and the spacer 4 to each other. Elastic modulus of the adhesive member 5 is smaller than elastic modulus of the spacer 4. At least a part of a lateral surface of the interference filter 10 is located on the placement surface such that a part of the placement surface of the spacer 4 is disposed outside the lateral surface. The adhesive member 5 is disposed in a corner portion formed by the lateral surface of the interference filter 10 and the part of the placement surface of the spacer 4 and contacts each of the lateral surface and the part of the placement surface.
Abstract:
An optical imaging system (e.g., hyperspectral imaging system) is described herein which includes imaging optics, an uni-axial homogenizer (including a rectangular cross-section light pipe and an astigmatic paraxial optic), and a detector. The uni-axial homogenizer is configured to preserve imaging along one axis while homogenizing (removing all image information) along a second perpendicular axis. In one embodiment, the uni-axial homogenizer is utilized in a spectrograph of a hyperspectral imaging system where the rectangular cross-section light pipe replaces the entrance slit of the spectrograph and the astigmatic paraxial optic is built into the design of the spectrometer's optics.
Abstract:
A spectrometer (100) for characterizing a radiation beam, the spectrometer (100) comprising an optical radiation guiding system comprising a collimator (110) for collimating the radiation beam into a collimated radiation beam, and a beam shaper (120) for distributing the power of the collimated radiation beam over a discrete number of line shaped fields, and a spectrometer chip (130) wherein the spectrometer chip (130) is adapted for processing the radiation in a discrete number of line shaped fields coming from the beam shaper (120).
Abstract:
Die Erfindung betrifft ein Verfahren zur Ermittlung zumindest einer Prüfeigenschaft eines Prüfgegenstands und eine Messvorrichtung, welche geeignet ist, ein Messfeld (3) unter einer Vielzahl an Anstrahlungskombinationen aus Einstrahlungswinkel (α) und/oder Wellenlängenbereich (A) mit elektromagnetischer Strahlung (5) anzustrahlen und die Intensität der jeweils von dem Messfeld unter zumindest einem Abstrahlungswinkel (β) remittierten elektromagnetischen Strahlung (5) zu messen. Die Prüfeigenschaft weist zumindest ein definiertes messbares Einzelmerkmal auf, wobei das Einzelmerkmal oder eine definierte Merkmalskombination mehrerer solcher Einzelmerkmale die Herkunft und/oder Identität des Prüfgegenstandes (1) belegt, wobei das Einzelmerkmal oder die Merkmalskombination messbar ist, wenn sie durch die elektromagnetische Strahlung (5) auf eine durch eine Auswahl an Anstrahlungkombinationen definierte Art und Weise optisch angeregt wird. Das Einzelmerkmal oder die Merkmalskombination wird mit der Messvorrichtung (4) in dieser Art und Weise angeregt und gemessen.
Abstract:
Portable spectrophotometer and method for characterizing solar collector tubes for simultaneously and on-field characterizing reflection and transmission coefficients. This device includes all the components needed to take this measurement, such as a module that takes the measurement of the reflection coefficient (R) of the inner tube (1'), a module that takes the measurement of transmission coefficient (T) of the outer tube (1"), an electronic data acquisition and processing system (12), an external computer (13) for controlling the device and sending the measured data (17) and a communication system (15) between device and the computer (13).
Abstract:
A spectrophotometer optics system is provided. The spectrophotometer optics system includes an optical sensing array and an optical waveguide including an input side and an output side. The input side of the optical waveguide receives input light and the optical sensing array is located at the output side of optical waveguide. The optical waveguide is configured to carry light to be analyzed by total internal reflection to the output side of the optical waveguide and to direct the light to be analyzed toward the optical sensing array. The spectrophotometer optics system includes an optical dispersive element configured to separate the light to be analyzed into separate wavelength components, and the optical dispersive element is supported by the optical waveguide.
Abstract:
In some aspects, a device for apportioning granular samples includes a sample feeder defining a conduit, the conduit including a first opening to receive the granular samples and a second opening. The device includes a shuttle operably coupled to the sample feeder to receive the granular samples from the conduit via the second opening. The shuttle is configured to apportion the granular samples to incrementally enter a sample chamber to be analyzed. The device includes an outlet conduit fluidly coupled to the sample chamber and configured to permit the sample chamber to be evacuated.