摘要:
Electron-beam-induced chemical reactions with precursor gases are controlled by adsorbate depletion control. Adsorbate depletion can be controlled by controlling the beam current, preferably by rapidly blanking the beam, and by cooling the substrate (54). The beam (12,13) preferably has a low energy to reduce the interaction volume. By controlling the depletion and the interaction volume, a user has the ability to produce precise shapes.
摘要:
The invention describes a particle source in which energy selection occurs. The energy selection occurs by sending a beam of electrically charged particles 103 eccentrically through a lens 107. As a result of this, energy dispersion will occur in an image formed by the lens. By projecting this image onto a slit 109 in an energy selecting diaphragm 108, it is possible to allow only particles in a limited portion of the energy spectrum to pass. Consequently, the passed beam 113 will have a reduced energy spread. Deflection unit 112 deflects the beam to the optical axis 101. One can also elect to deflect a beam 105 going through the middle of the lens toward the optical axis and having, for example, greater current. The energy dispersed spot is imaged on the slit by a deflector 111. When positioning the energy dispersed spot on the slit, central beam 105 is deflected from the axis to such an extent that it is stopped by the energy selecting diaphragm. Hereby reflections and contamination resulting from this beam in the region after the diaphragm are avoided. Also electron-electron interaction resulting from the electrons from the central beam interacting with the energy filtered beam in the area of deflector 112 is avoided.
摘要:
The invention describes a corrector for the correction of chromatic aberrations in a particle lens, such as used in a SEM or a TEM. So as to reduce the stability demands on the power supplies of such a corrector, the energy with which the particle beam passes through the corrector is lower than the energy with which the beam passes through the lens to be corrected.
摘要:
Methods for using electron diffraction holography to investigate a sample, according to the present disclosure include the initial steps of emitting a plurality of electrons toward the sample, forming the plurality of electrons into a first electron beam and a second electron beam, and modifying the focal properties of at least one of the two beams such that the two beams have different focal planes. Once the two beams have different focal planes, the methods include focusing the first electron beam such that it has a focal plane at or near the sample, and focusing the second electron beam so that it is incident on the sample, and has a focal plane in the diffraction plane. An interference pattern of the first electron beam and the diffracted second electron beam is then detected in the diffraction plane, and then used to generate a diffraction holograph.
摘要:
Crystallographic information of crystalline sample (14) can be determined from one or more three-dimensional diffraction pattern datasets generated based on diffraction patterns collected from multiple crystals. The crystals for diffraction pattern acquisition may be selected based on a sample image. At a location of each selected crystal, multiple diffraction patterns of the crystal are acquired at different angles of incidence by tilting the electron beam, wherein the sample is not rotated while the electron beam is directed at the selected crystal.
摘要:
An adjustable magnetic field free objective lens for a charged particle microscope is disclosed herein. An example charged particle microscope at least includes first (220) and second (222) optical elements arranged on opposing sides of a sample plane (208), a third optical element (244, 246, 250) arranged around the sample plane, and a controller coupled to control the first, second and third optical elements. The controller coupled to excite the first and second optical elements to generate first and second magnetic lenses, the first and second magnetic lenses formed on opposing sides of the sample plane and oriented in the same direction, and excite the third optical element to generate a third magnetic lens at the sample plane that is oriented in an opposite direction, where a ratio of the excitation of the third optical element to the excitation of the first and second optical elements adjusts a magnetic field at the sample plane.
摘要:
Charged particle microscopes having an optimized performance across multiple modes of operation are disclosed herein. More specifically, the disclosure includes improved charged particle microscopes that increase and/or optimize the performance of the microscope in both a standard mode of operation and a Lorentz mode of operation. The charged particle microscopes include an extra transfer lens between a corrector and the traditional transfer lens which allows for the flexibility to optimize performance in both the standard mode of operation and the Lorentz mode of operation. For example, in a Lorentz mode of operation, improved charged particle microscope according to the present disclosure can be used to tune the C 5 aberration, while hardly affecting defocus and/or C s aberrations. Additionally, the inclusion of the extra transfer lens provides the charged particle microscopes disclosed herein with an extra degree of freedom with which to zero defocus and total C s and C 5 .
摘要:
A charged-particle microscope comprising: - A charged-particle source, for producing a beam of charged particles that propagates along a particle-optical axis; - A sample holder, for holding and positioning a sample; - A charged-particle lens system, for directing said beam onto a sample held on the sample holder; - A detector, for detecting radiation emanating from the sample as a result of its interaction with the beam; - A beam pulsing device, for causing the beam to repeatedly switch on and off so as to produce a pulsed beam,
wherein the beam pulsing device comprises a unitary resonant cavity disposed about said particle-optical axis and having an entrance aperture and an exit aperture for the beam, which resonant cavity is embodied to simultaneously produce a first oscillatory deflection of the beam at a first frequency in a first direction and a second oscillatory deflection of the beam at a second, different frequency in a second, different direction. The resonant cavity may have an elongated (e.g. rectangular or elliptical) cross-section, with a long axis parallel to said first direction and a short axis parallel to said second direction.
摘要:
The invention relates to a charged-particle apparatus equipped with improved Wien-type C c corrector. A charged particle apparatus (TEM, STEM, SEM) with a double-focusing ExB filter as a corrector for an objective lens is known to the person skilled in the art. Inventors realized an improved corrector by introducing a drift space in the middle of the corrector, thereby dividing the corrector in two, preferably identical, modules. This results in a corrector with, for identical excitation, a larger negative C c and enables positioning an energy selective slit in the mid-plane, thus enabling the corrector to simultaneously act as an energy filter. A simulation of two ExB modules with a length of 25 mm, divided by a drift space of 10 mm, is discussed.