Abstract:
In known spectrophometers, a single light source is used to illuminate both a sample and a reference. A single detector is used to detect the light at both the sample and the reference. A chopper wheel having aperture portions is used to allow the light to pass through a selected filter in the apertures. However, in such devices, the beams from the sample and the reference arrive at the detector at the same time and movable shutters need to be employed. Described herein is a spectrophotometer (10) comprising a single light source (12), a single detector (14), optics (30, 36, 340, 42, 44, 46, 48, 50, 52, 54, 56, 58, 90, 92, 100) for dually and alternatively reading a sample (94) and a reference (96), and which employs only one moving part. That moving part is a chopper (42) containing multiple pass-through apertures (60a, 60b, 60c, 60d, 60e, 60f), each filled with a unique bandpass filter to select wavelengths to specifically illuminate the sample (94) or reference (96). To inform the spectrophotometer (10) whether and when it is reading the sample (94) or the reference (96), energy relay means (70a, 70b, 70c, 70d, 70e, 70f, 70g, 70h, 70i, 70j, 70k, 70l) are provided between an energy emitter (80) and an energy detector (82) in an amount of at least twice the number of the pass-through apertures (60a, 60b, 60c, 60d, 60e, 60f).
Abstract:
In known spectrophometers, a single light source is used to illuminate both a sample and a reference. A single detector is used to detect the light at both the sample and the reference. A chopper wheel having aperture portions is used to allow the light to pass through a selected filter in the apertures. However, in such devices, the beams from the sample and the reference arrive at the detector at the same time and movable shutters need to be employed. Described herein is a spectrophotometer (10) comprising a single light source (12), a single detector (14), optics (30, 36, 340, 42, 44, 46, 48, 50, 52, 54, 56, 58, 90, 92, 100) for dually and alternatively reading a sample (94) and a reference (96), and which employs only one moving part. That moving part is a chopper (42) containing multiple pass-through apertures (60a, 60b, 60c, 60d, 60e, 60f), each filled with a unique bandpass filter to select wavelengths to specifically illuminate the sample (94) or reference (96). To inform the spectrophotometer (10) whether and when it is reading the sample (94) or the reference (96), energy relay means (70a, 70b, 70c, 70d, 70e, 70f, 70g, 70h, 70i, 70j, 70k, 70l) are provided between an energy emitter (80) and an energy detector (82) in an amount of at least twice the number of the pass-through apertures (60a, 60b, 60c, 60d, 60e, 60f).
Abstract:
A micro-Raman device includes a first laser light source, a second laser light source, a first holder, a second holder, a first ND filter, and a second ND filter. The first laser light source and the second laser light source generate first laser light of a first wavelength and second laser light of a second wavelength, respectively. The second wavelength is different from the first wavelength. The first laser light and the second laser light proceed in a second direction orthogonal to a first direction while being separated from each other in the first direction. The first holder and the second holder are arranged overlapping each other in the second direction.
Abstract:
The invention relates to a lens main part (10) for a spectrometer for mounting other components (18, 24, 28) of a spectrometer, the lens main part being produced as a sandwich construction from at least three flat elements (12, 14, 16) arranged one on top of the other and interconnected, in particular bonded, each of said flat elements (12, 14, 16) having a low coefficient of thermal expansion which is substantially isotropic, at least on one isotropic plane. The flat elements (12, 14, 16) are arranged on top of one another and interconnected such that their isotropic planes run substantially parallel to one another.
Abstract:
An imaging apparatus and method are provided for improving discrimination between parts of a scene enabling enhancement of an object in the scene. A camera unit is arranged to capture first and second images from the scene in first and second distinct and spectrally spaced apart wavebands. An image processing unit processes the images so captured and processes polarimetric information in the images to enable better discrimination between parts of the scene. An image of the scene, including a graphical display of the polarimetric information, may be displayed on a visual display unit thus enhancing an object in the scene for viewing by a user. Correlation parameters indicating, possibly on a pixel-by-pixel basis, the correlation between the actual image intensity at each angle of polarization and a modelled expected image intensity may be used to enhance the visibility of an object.
Abstract:
An optical imaging system and method including a movable pixelated filter array, a shutter mechanism to which the pixelated filter array is attached, and a controller configured to implement a data reduction algorithm. The shutter mechanism is configured to move the pixelated filter array into and out of the optical path, and the data reduction algorithm allows the controller to account for axial and/or lateral misalignment of the filter array relative to the imaging detector array or its conjugate. In certain examples, the controller is further configured to use the data reduction algorithms also to perform wavefront sensing, for example to estimate wavefront error.
Abstract:
A spectral camera for producing a spectral output is disclosed. The spectral camera has an objective lens for producing an image, a mosaic of filters for passing different bands of the optical spectrum, and a sensor array arranged to detect pixels of the image at the different bands passed by the filters, wherein for each of the pixels, the sensor array has a cluster of sensor elements for detecting the different bands, and the mosaic has a corresponding cluster of filters of different bands, integrated on the sensor element so that the image can be detected simultaneously at the different bands. Further, the filters are first order Fabry-Perot filters, which can give any desired passband to give high spectral definition. Cross talk can be reduced since there is no longer a parasitic cavity.
Abstract:
A calibration system (300) for a detector (328) includes a base member (302), a plurality of radiation sources (304)fixedly attached to the base member, and a positioning mechanism (306) attached to the base member. Each radiation source (394) is maintained at a different temperature and is configured to emit electromagnetic radiation. The positioning mechanism includes a movable member (308) having a single degree of freedom with respect to the base member (302), and a plurality of optical elements arranged (310) on the movable member. Each optical element corresponds (310) to one of the radiation sources (304) and each optical element is configured to at least be movable between a calibration position and a non-calibration position. When the optical element is in the calibration position, the optical element is configured to receive the electromagnetic radiation from its corresponding radiation source and to reflect the electromagnetic radiation to a detector.
Abstract:
The invention relates to a spectrometer arrangement (10) comprising an echelle grating (18; 46) for dispersing the radiation entering the spectrometer arrangement (10) in a main dispersion direction, and a dispersion arrangement (16; 40) for dispersing a parallel beam generated from the radiation entering the spectrometer arrangement in a transverse dispersion direction, characterized in that the dispersion arrangement (16; 40) is reflective and disposed with respect to the echelle grating (18; 46) such that the parallel beam is reflected toward the echelle grating. The echelle grating (18; 46) can preferably be disposed such that the dispersed radiation is reflected back toward the dispersion arrangement (16; 40).