摘要:
An element including: a first electrode; an intermediate layer made of a silicone rubber composition containing a silicone rubber; and a second electrode, where the first electrode, the intermediate layer, and the second electrode are disposed in this order, wherein a peak intensity ratio (1095±5 cm−1/1025±5 cm−1) of an infrared absorption spectrum of the intermediate layer varies along a vertical direction relative to a surface of the first electrode, and to a surface of the second electrode.
摘要:
Provided are a touch sensitive element and a manufacturing method thereof. The manufacturing method for the touch sensitive element according to an embodiment of the present disclosure includes forming an electroactive polymer coating layer by applying an electroactive polymer solution on a substrate; forming an electroactive layer by heating and pressurizing the electroactive polymer coating layer using a hot press roller; and forming an electrode on the electroactive layer.
摘要:
Disclosed is a piezoelectric device free of some problems associated with ion implantation: the degradation of the surface roughness of the piezoelectric thin film and the cracking of the supporting substrate. Also disclosed is a method for manufacturing this piezoelectric device. During an isolation formation step a supporting substrate (50) has a piezoelectric thin film (10) formed on its front (14) with a compressive stress film (90) present on its back (15). The compressive stress film (90) compresses the surface (14 on the piezoelectric single crystal substrate (1) side of the supporting substrate (50), and the piezoelectric thin film (10) compresses the back (15) of the supporting substrate (50), which is opposite to the surface (14) on the piezoelectric single crystal substrate (1) side. In other words, the compressive stress produced by the compressive stress film (90) and that by the piezoelectric thin film (10) are in balance in the supporting substrate (50). This makes the supporting substrate (50) free of warpage and able to remain flat. To this end, the driving force that induces isolation in the isolation formation step is gasification of the implanted ionized element rather than the compressive stress to the isolation plane produced by the piezoelectric thin film (10).
摘要:
A nanopiezoelectric generator is provided. The nanopiezoelectric generator includes a first electrode; a second electrode; at least one nanostructure that is interposed between the first electrode and the second electrode, and includes a piezoelectric material and first carriers; and a concentration adjusting unit that adjusts a concentration of the first carriers in the at least one nanostructure.
摘要:
To provide a processing method which can restrain the charging of lithium tantalate single crystal or lithium niobate single crystal without impairing the piezoelectricity. Moreover, to provide a processing apparatus which can carry out the processing method simply and easily. It is characterized in that a wafer 50, made from a lithium tantalate single crystal or a lithium niobate single crystal, and a reducing agent 60, including an alkali metal compound, are accommodated in a processing tank 2, and the inside of the processing tank 2 is held at a temperature of from 200 °C to 1000 °C under decompression, thereby reducing the wafer 50.
摘要:
There are provided steps of polarizing a ceramic composition including a perovskite compound containing Pb, Zr, Ti and Mn as main components and a heat treatment step for keeping the polarized ceramic composition within a temperature range lower than Tc (Tc denoting the Curie temperature of the ceramic composition) for 1 to 100 minutes.
摘要:
The invention relates to a method for producing a piezostack, whereby the asymmetry of the electrically inactive zones (2, 2.1, 2.2) in a piezostack (5) having electrically inactive zones (2, 2.1. 2.2) on a plurality of sides thereof is determined, and the electrically inactive zone with an oversize is then reduced until the asymmetry reaches an acceptable proportion.
摘要:
An element including: a first electrode; an intermediate layer made of a silicone rubber composition containing a silicone rubber; and a second electrode, where the first electrode, the intermediate layer, and the second electrode are disposed in this order, wherein a peak intensity ratio (1095±5 cm−1/1025±5 cm−1) of an infrared absorption spectrum of the intermediate layer varies along a vertical direction relative to a surface of the first electrode, and to a surface of the second electrode.