Abstract:
A device (e.g., SAR ADC device) include a DAC circuit and generates a digital output based on logic circuitry that includes SAR logic. Additional logic circuitry includes delta modulation circuitry and dynamic element matching circuitry. The delta modulation circuitry provides several digital outputs of the SAR DAC, while the dynamic element matching circuitry selects a different set of capacitors from the DAC circuit. Each cycle is added together and averaged, and then added to the digital output from the SAR logic.
Abstract:
A low power analog-to-digital converter configured to sense sensor signals may include a loop filter and a feedback digital-to-analog converter. The loop filter may have a loop filter input configured to receive an input current signal from a sensor and generate an output signal responsive to the input current signal. The feedback digital-to-analog converter may have a feedback output configured to generate a current-mode or charge-mode feedback output signal responsive to the output signal, the feedback output coupled to the loop filter input in order to combine the input current signal and the feedback output signal at the input.
Abstract:
An analog input stage has m differential input channels, wherein m>l. The analog input stage is configured to select one of the m differential input channels and provide an output signal. The analog input stage has n identical selection units each having m differential channel inputs and one differential output, wherein n is at least 2111"1. Each selection unit is operable to be coupled to any of the differential input channels through respective differential multiplexer units, wherein the multiplexor units are driven to select one of the differential input channels and couple the selected differential channel input through a butterfly switch unit with the differential output of the selection unit. The differential output signals of the n selection units are combined whereby unwanted crosstalk from channels other than a selected channel are removed by cancellation.
Abstract:
A time-interleaved analog-to-digital converter (ADC) uses M sub-analog-to-digital converters (sub-ADCs) to, according to a sequence, sample an analog input signal to produce digital outputs. When the M sub-ADCs are interleaved, the digital outputs exhibit mismatch errors between the M sub-ADCs due to mismatches between the sub-ADCs. A more second order subtle effect is that the mismatch error for a particular digital output from a particular ADC, due to internal coupling or other such interaction and effects between the M sub-ADCs, can vary depending on which sub-ADC(s) were used before and/or after the particular sub-ADC. If M sub-ADCs are time-interleaved randomly, the mismatches between the M sub-ADCs become a function of the sub-ADC selection pattern in the sequence. The present disclosure describes mechanisms for measuring and reducing these order-dependent mismatches to achieve high dynamic range performance in the time-interleaved ADC.
Abstract:
The present invention relates to a signal processing apparatus comprising a signal input and a signal output; a plurality of signal processing units, wherein each signal processing unit having the same structure and at least one spatial error, being connected to the signal input, and being adapted to subject an input signal from the signal input to predetermined signal processing; selection means configured to select and form a predetermined number of groups from the plurality of signal processing units in accordance with a predetermined criterion; and control means for controlling the groups of the signal processing units to be active in a time interleaved schema, wherein an active group provides a respective processed input -signal as an output signal to the signal output; wherein the plurality of signal processing units comprises more signal processing units as required to realize a predetermined time interleaving factor.
Abstract:
A quantizer adapted for use with a delta-sigma analog-to-digital converter. The quantizer includes first and second comparators adapted to compare an input analog signal to a threshold and provide a digital output in response thereto. First and second thresholds are provided to the first and second comparators respectively. In accordance with the present teachings, a mechanism is provided for changing the thresholds to minimize conversion errors. While the mechanism for changing the thresholds may be implemented with resistive and/or capacitive ladders, in the illustrative embodiment, digital-to-analog converters are utilized. The DACs are driven by error shaping logic. The inventive quantizer allows for an improved delta-sigma analog-to-digital converter design which combines an ADC and a DAC. The DAC reconstructs the analog equivalent of the digital output of the ADC. The ADC is a flash converter consisting of one comparator per threshold. The DAC operates by summing the outputs of a set of nominally identical unit elements. The DAC has the same number of elements as there are comparators in the flash ADC and each comparator drives one element of the DAC. A novel feature is that the thresholds of the comparators in the ADC can individually be dynamically adjusted, so that the correspondence between an element of the DAC and a particular threshold of the ADC can be varied from sample to sample under the control of logic circuitry. This arrangement allows the correspondence between DAC elements and ADC thresholds to be remapped without introducing any additional delay into the signal path between the ADC and the DAC. In a high speed continuous-time delta sigma modulator, this allows randomization or shaping of the mismatch errors of the DAC elements to be achieved without incurring any penalty in sample rate, nor adding any excess delay into the loop that might destabilize or otherwise degrade the operation of the modulator.
Abstract:
A digital-to-analog converter is provided for accomplishing analog output characteristics using different digital-to-analog conversion type digital signal processing schemes. A plurality of bits of a received digital signal are divided into a plurality of bit groups. A digital signal processing unit includes a plurality of bit group digital signal processors for receiving the plurality of bit groups. The plurality of digital signal processors employ one or more digital-to-analog conversion type digital signal processing schemes for generating a plurality of digital signal processed outputs. The converter adds the plurality of digital signal processed outputs to generate a composite signal processed output, and includes a weight generating unit for controlling a plurality of shared weight generating elements in response to the composite digital signal processed output to generate an analog output signal.
Abstract:
A delta-sigma modulator includes a receiving circuit, a loop filter module, a quantizer, a delta-sigma truncator, a digital filter module, and an output circuit. The receiving circuit is arranged for receiving a feedback signal and an input signal to generate a summation signal. The loop filter module is arranged for filtering the summation signal to generate a filtered summation signal. The quantizer is arranged for generating a first digital signal according to the filtered summation signal. The delta-sigma truncator is arranged for truncating the first digital signal to generate a second digital signal. The digital filter module is arranged for filtering the first digital signal and the second digital signal to generate a filtered first digital signal and a filtered second digital signal, respectively. The output circuit is arranged for generating an output signal according to the filtered first digital signal and the filtered second digital signal.
Abstract:
A delta sigma modulator which has improved the dynamic range. The ΔΣ modulator has a plurality of ADCs and a plurality of DACs, the plurality of ADCs and DACs are connected in a loop. The plurality of ADCs are coupled with an incoming analog signal. A clock generator provides a plurality of clock signals which control the plurality of ADCs and the plurality of DACs, the clock signals being offset relative to each other in the time domain thereby enabling each ADC in the plurality of ADCs one at a time and each DAC in the plurality of DACs one at a time so that the ΔΣ modulator processes data in the incoming analog signal in an interleaved fashion. The delta sigma modulator has an Nth order filter in a forward path of the loop.