Abstract:
The present inventive concept relates to a substrate processing apparatus and a substrate processing method, which can accurately measure temperature in even a low-temperature region, thus making it possible to efficiently manage heat. The substrate processing apparatus comprises: a chamber for providing a processing space in which a substrate is processed; a substrate support provided in the processing space of the chamber in order to support the substrate; a heater provided with a plurality of semiconductor laser modules that emit light toward a first surface of the substrate; and a pyrometer which is provided on the side of a second surface of the substrate facing the first surface and detects light emitted from the substrate to measure the temperature of the substrate. The main light-emitting wavelength of the plurality of semiconductor laser modules may be shorter than the measurement wavelength of the pyrometer.
Abstract:
The present disclosure relates to a thin film manufacturing apparatus including a chamber having an inner process space of a substrate, a substrate support unit connected to the chamber to support the substrate in the chamber, a heat source unit connected to the chamber and disposed opposite to the substrate support unit, a plasma generation unit connected to one side of the chamber to supply radicals between the substrate support unit and the heat source unit, and a baffle connected to the chamber and including a movement passage of the radicals therein and a plurality of first exhaust holes communicating with the movement passage, which are formed in a top surface thereof. The thin film manufacturing apparatus may improve uniformity of the thin film formed on the substrate.
Abstract:
The present disclosure relates to a thin film manufacturing apparatus including a chamber having an inner process space of a substrate, a substrate support unit connected to the chamber to support the substrate in the chamber, a heat source unit connected to the chamber and disposed opposite to the substrate support unit, a plasma generation unit connected to one side of the chamber to supply radicals between the substrate support unit and the heat source unit, and a baffle connected to the chamber and including a movement passage of the radicals therein and a plurality of first exhaust holes communicating with the movement passage, which are formed in a top surface thereof. The thin film manufacturing apparatus may improve uniformity of the thin film formed on the substrate.
Abstract:
The present invention discloses a method of manufacturing a shadow mask, wherein hybrid processing is used to form a mask pattern on the shadow mask, the method includes: forming a laser-processed pattern by irradiating a laser beam from above a base; and forming a wet-etched pattern that continues from the laser-processing pattern, by performing wet etching from above the base or from below the base on which the laser-processed pattern is formed. The present invention uses hybrid processing including wet etching and laser processing for manufacturing a shadow mask. The method has an effect on solving the productivity degradation of the conventional laser processing and provides a shadow mask with high quality using wet etching.
Abstract:
The present invention discloses a method of manufacturing a shadow mask, wherein hybrid processing is used to form a mask pattern on the shadow mask, the method includes: forming a wet-etched pattern by performing wet etching from above a base; and forming a laser-processed pattern that continues from the wet-etched pattern, by performing laser processing from above the base or from below the base on which the wet-etched pattern is formed. The present invention uses hybrid processing including wet etching and laser processing for manufacturing a shadow mask. The method has an effect on solving the productivity degradation of the conventional laser processing and provides a shadow mask with high quality using wet etching.
Abstract:
The present disclosure controls the heat source unit such that a to-be-processed object in which a hydrogen-containing to-be-processed layer is formed is irradiated with light in two stages, and thus the electrical characteristics of a semiconductor device may be suppressed and prevented from being deteriorated due to hydrogen. That is, ultraviolet light (UV) which is firstly radiated may induce a chemical reaction for separating Si—H bonds in the to-be-processed layer, and infrared light (IR) which is secondly radiated may induce a thermal reaction for vaporizing the separated hydrogen from the Si—H bonds. As such, both a chemical reaction for separating bonds of hydrogen and other ions in the to-be-processed layer and a thermal reaction for vaporizing hydrogen are performed, and thus hydrogen may be more easily removed than a temperature at which hydrogen is vaporized from the to-be-processed layer by only a thermal reaction.
Abstract:
The present disclosure controls the heat source unit such that a to-be-processed object in which a hydrogen-containing to-be-processed layer is formed is irradiated with light in two stages, and thus the electrical characteristics of a semiconductor device may be suppressed and prevented from being deteriorated due to hydrogen. That is, ultraviolet light (UV) which is firstly radiated may induce a chemical reaction for separating Si—H bonds in the to-be-processed layer, and infrared light (IR) which is secondly radiated may induce a thermal reaction for vaporizing the separated hydrogen from the Si—H bonds. As such, both a chemical reaction for separating bonds of hydrogen and other ions in the to-be-processed layer and a thermal reaction for vaporizing hydrogen are performed, and thus hydrogen may be more easily removed than a temperature at which hydrogen is vaporized from the to-be-processed layer by only a thermal reaction.
Abstract:
This invention relates to an apparatus and method for cleaning a photomask. This apparatus, suitable for use in removing an adhesive residue from a photomask, includes a photomask disposed such that a surface thereof on which an adhesive residue is left behind is directed downwards, a metal plate formed adjacent to the adhesive residue, and a laser generator for irradiating a laser onto the metal plate so that the adhesive residue is removed by heat generated from the metal plate.
Abstract:
The present disclosure relates to a power control device for temperature control capable of phase control compensation according to power fluctuations, a thermal processing system having the same, and a temperature control method for the thermal processing system. The power control device for temperature control includes a power control unit configured to control an amount of power supplied to a heating source by controlling a phase of AC power supplied from a power source and a power measurement unit connected to the power source and configured to measure the AC power, wherein the power control unit controls the phase of the AC power by compensating a phase angle according to a difference between a reference power value and the measured value measured by the power measurement unit.
Abstract:
Provided are an apparatus for processing a substrate and a method for measuring a temperature of the substrate. The apparatus for processing the substrate includes a temperature measurement part and a light-transmitting shield plate. The temperature measurement part includes a light source, a light receiving part configured to receive reflected light reflected by the substrate or the shield plate among the light irradiated from the light source, and a radiant light emitted from the substrate to measure a quantity of the reflected light and an intensity of the radiant light and a temperature calculation part configured to calculate the temperature of the substrate, to which a contamination level of the shield plate is reflected, by using the quantity of the reflected light and the intensity of the radiant light.