Abstract:
Disclosed is a metal core solder ball having improved heat conductivity, including a metal core having a diameter of 40˜600 μm, a first plating layer formed on the outer surface of the metal core, and a second plating layer formed on the outer surface of the first plating layer.
Abstract:
An etchant composition is provided. The etchant composition includes about 40 to about 65 wt % of phosphoric acid, about 2 to about 5 wt % of nitric acid, about 2 to about 20 wt % of acetic acid, about 0.1 to about 2 wt % of a compound containing phosphate, about 0.1 to about 2 wt % of a compound simultaneously containing an amino group and a carboxyl group, and a remaining weight percent of water for the total weight of the composition.
Abstract:
An array substrate for an IPS mode LCD device includes a gate line in a first direction on a substrate and a data line in a second direction over the substrate; a metal and a common lines in the second direction on the substrate and includes a plurality of first and second protruding portions in the first direction, respectively; a TFT connected to the gate and data lines; an insulating layer over the metal and common lines; a common electrode over the insulating layer and including a first common portion in the second direction and a plurality of second common portions in the first direction; and a pixel electrode over the insulating layer and including a first pixel portion in the second direction and a plurality of second pixel portions in the first direction, wherein the plurality of second common and pixel portions are alternately arranged.
Abstract:
An array substrate for an in-plane switching mode liquid crystal display device includes a substrate, a gate line along a first direction on the substrate, a data line along a second direction and crossing the gate line to define a pixel region, a thin film transistor connected to the gate and data lines, a pixel electrode in the pixel region and connected to the thin film transistor, and a common electrode in the pixel region and arranged in an alternating pattern with the pixel electrode, wherein each of the pixel electrode and the common electrode includes a transparent conductive pattern, and one of the pixel electrode and the common electrode further includes an opaque conductive pattern having a more narrow width than the transparent conductive pattern.
Abstract:
A liquid crystal display and a fabricating method thereof for improving an aperture ratio are disclosed. A liquid crystal display (LCD) according to the present invention includes a gate line, a data line and a common line on the thin film transistor array substrate, the gate line crossing the data line to define a pixel region; a thin film transistor near the crossing of the gate line and the data line; a common electrode connected to the common line in the pixel region; and a pixel electrode connected to the thin film transistor in the pixel area for forming an in-plane electric field in association with the common electrode during an operation of the LCD, wherein an edge of the pixel electrode overlaps the common line with at least one insulating layer therebetween, and an edge of the common electrode overlaps the pixel electrode with said at least one insulating layer therebetween.
Abstract:
A liquid crystal display and a fabricating method thereof for improving an aperture ratio are disclosed. A liquid crystal display (LCD) according to the present invention includes a gate line, a data line and a common line on the thin film transistor array substrate, the gate line crossing the data line to define a pixel region; a thin film transistor near the crossing of the gate line and the data line; a common electrode connected to the common line in the pixel region; and a pixel electrode connected to the thin film transistor in the pixel area for forming an in-plane electric field in association with the common electrode during an operation of the LCD, wherein an edge of the pixel electrode overlaps the common line with at least one insulating layer therebetween, and an edge of the common electrode overlaps the pixel electrode with said at least one insulating layer therebetween.
Abstract:
A liquid crystal display and a method for fabricating the same are disclosed, which can yield maximum liquid crystal efficiency from all areas within the pixels by orienting the liquid crystals in a manner that the liquid crystals are twisted by 90° in an area above the electrodes and twisted by 180° in an area in-between the electrodes. The liquid crystal display device includes, a pixel electrode insulated from a counter electrode having a plurality of slits on a first substrate, a second substrate facing into and adhered to the first substrate and having a liquid crystal layer formed therebetween, and an orientation layer formed on each inner surface of the first substrate and the second substrate, wherein one orientation layer is oriented to be twisted by 90° from above the pixel electrode and the other orientation layer is oriented to be twisted by 180° from above the slit.
Abstract:
A liquid crystal display and a fabricating method thereof for improving an aperture ratio are disclosed. A liquid crystal display (LCD) according to the present invention includes a gate line, a data line and a common line on the thin film transistor array substrate, the gate line crossing the data line to define a pixel region; a thin film transistor near the crossing of the gate line and the data line; a common electrode connected to the common line in the pixel region; and a pixel electrode connected to the thin film transistor in the pixel area for forming an in-plane electric field in association with the common electrode during an operation of the LCD, wherein an edge of the pixel electrode overlaps the common line with at least one insulating layer there between, and an edge of the common electrode overlaps the pixel electrode with said at least one insulating layer therebetween.
Abstract:
A method and apparatus are provided for inspecting an electrical defectiveness of a liquid crystal display substrate. The method includes shorting ESD protection devices with a conductive shorting bar to form a current path on each of signal wirings of the substrate, supplying a current to the signal wirings, and determining a defectiveness of the signal wirings depending on the current flowing on the signal wirings.
Abstract:
An array substrate for a liquid crystal display device includes a flexible substrate, a buffer layer on the flexible substrate, a thin film transistor including a gate electrode, a source electrode and a drain electrode on the buffer layer, and a pixel electrode on the thin film transistor.