摘要:
Systems and methods for a motor-driven curtain or blind assembly are provided. For example, in some embodiments the motor drive assembly includes a track, a lead runner, and a plurality of sensors. The track can have a plurality of coils that can be electrically activated to generate an electromagnetic field to cause the lead runner to slide along the track. The lead runner may include magnet housing with a magnet to interact with the electromagnetic field. In some embodiments, the plurality of sensors or switches can be disposed between the coils. The sensors can be configured to activate the electromagnetic field locally to cause the lead runner to slide along the track. Examples of the sensors or switches include, but are not limited to, a reed switch, a silicone magnetic switch, an optical switch, a mechanical limit switch, a proximity switch, a magnetic encoder, or an optical encoder.
摘要:
A method for enabling fabrication of memory devices requiring no or minimal additional mask for fabrication having a low cost, a small footprint, and multiple-time programming capability is disclosed. Embodiments include: forming a gate stack on a substrate; forming a source extension region in the substrate on one side of the gate stack, wherein no drain extension region is formed on the other side of the gate stack; forming a tunnel oxide liner on side surfaces of the gate stack and on the substrate on each side of the gate stack; forming a charge-trapping spacer on each tunnel oxide liner; and forming a source in the substrate on the one side of the gate stack and a drain in the substrate on the other side of the gate stack.
摘要:
A stress liner having first and second stress type is provided over a first type and a second type transistor to improve reliability and performance without incurring area penalties or layout deficiencies.
摘要:
A device and methods for forming a device are disclosed. The device includes a substrate having first, second and third regions. The first region includes a memory cell region, the second region includes a peripheral circuit region and the third region includes a logic region. A memory cell which includes a memory transistor having a first stack height (TSM) is disposed in the first region. A high voltage (HV) transistor having a second stack height (TSHV) is disposed in the second region and a logic transistor having a third stack height (TSL) is disposed in the third region. The first, second and third stack heights are substantially the same across the substrate.
摘要:
In one example, the memory device disclosed herein includes a gate insulation layer and a charge storage layer positioned above the gate insulation layer, wherein the charge storage layer has a first width. The device further includes a blocking insulation layer positioned above the charge storage layer and a gate electrode positioned above the blocking insulation layer, wherein the gate electrode has a second width that is greater than the first width. An illustrative method disclosed herein includes forming a gate stack for a memory device, wherein the gate stack includes a gate insulation layer, an initial charge storage layer, a blocking insulation layer and a gate electrode, and wherein the initial charge storage layer has a first width. The method further includes performing an etching process to selectively remove at least a portion of the initial charge storage layer so as to produce a charge storage layer having a second width that is less than the first width of the initial charge storage layer.
摘要:
A method for fabricating a semiconductor device is presented. The method comprises providing a gate stack including a gate dielectric and gate electrode over a substrate. Stressor regions comprising stressor material incorporated into substitutional sites of the substrate are formed within the substrate on opposed sides of the gate stack. A first stressor layer having a first stress value is formed over the semiconductor device after forming the stressor regions followed by an anneal to memorize at least a portion of the first stress value in the semiconductor device, wherein the anneal is conducted at a low temperature.
摘要:
A non-volatile memory device (and method of manufacture) is disclosed and structured to enable a write operation using an ionization impact process in a first portion of the device and a read operation using a tunneling process in a second portion of the device. The non-volatile memory device (1) increases hot carrier injection efficiency, (2) decreases power consumption, and (3) enables voltage and device scaling in the non-volatile memory devices.
摘要:
A method and structure for a memory device, such as a 1T-SRAM, having a capacitor top plate directly over a doped bottom plate region. An example device comprises the following. An isolation film formed as to surround an active area on a substrate. A gate dielectric and gate electrode formed over a portion of the active area. A source element and a drain element in the substrate adjacent to the gate electrode. The drain element is comprised of a drain region and a bottom plate region. The drain region is between the bottom plate region and the gate structure. A capacitor dielectric and a capacitor top plate are over at least portions of the bottom plate region.
摘要:
Disclosed herein is a compact RRAM (Resistance Random Access Memory) device structure and various methods of making such an RRAM device. In one example, a device disclosed herein includes a gate electrode, a conductive sidewall spacer and at least one variable resistance material layer positioned between the gate electrode and the conductive sidewall spacer.
摘要:
One device disclosed herein includes first and second sidewall spacers positioned above a semiconducting substrate, wherein the first and second sidewall spacers are comprised of at least a conductive material, a conductive word line electrode positioned between the first and second sidewall spacers and first and second regions of variable resistance material positioned between the conductive word line electrode and the conductive material of the first and second sidewall spacers, respectively. This example also includes a base region of a bipolar transistor in the substrate below the word line electrode, an emitter region formed below the base region and first and second collector regions formed in the substrate within the base region, wherein the first collector region is positioned at least partially under the first region of variable resistance material and the second collector region is positioned at least partially under the second region of variable resistance material.