Abstract:
Fluid monitoring methods, systems and apparatus are disclosed, including a portable subassembly that is in electrical communication with a sensor in contact with the fluid being monitred. Preferred embodiments for the sensor include one or more flexural resonator sensing elements. In preferred embodiments the sensor subassembly is ported to multiple fluidic systems to monitor the fluid properties in an effecient manner.
Abstract:
Devices and methods for controlling and monitoring the progress and properties of multiple reactions are disclosed. The method and apparatus are especially useful for synthesizing, screening, and characterizing combinatorial libraries, but also offer significant advantages over conventional experimental reactors as well. The apparatus generally includes multiple vessels for containing reaction mixtures, and systems for controlling the stirring rate and temperature of individual reaction mixtures or groups of reaction mixtures. In addition, the apparatus may include provisions for independently controlling pressure in each vessel, and a system for injecting liquids into the vessels at a pressure different than ambient pressure. In situ monitoring of individual reaction mixtures provides feedback for process controllers, and also provides data for determining reaction rates, product yields, and various properties of the reaction products, including viscosity and molecular weight Computer-based methods are disclosed for process monitoring and control, and for data display and analysis.
Abstract:
Methods and apparatus for controlling an automated material handling procedure. The method includes receiving a recipe file comprising component information and mapping information; interacting with a user to create a procedure for executing a set of material handling steps; and causing a automated material-handling apparatus to carry out the set of material-handling steps by executing the procedure. The mapping information relates a source component and a destination component. The mapping information defines one or more transfers of at least one source component material to at least one destination component location. The method includes providing to the user an assortment of pre-programmed code objects and receiving from the user a selection and arrangement of the pre-programmed code objects. The procedure is defined by the user's selection and arrangement. The procedure contains at least one first pre-programmed code object operable to read and interpret the recipe file and at least one second pre-programmed code object operable to interpret a mapping read from the recipe file.
Abstract:
Computer-implemented methods, systems and apparatus implement techniques for generating custom coclasses. A runtime environment includes a client application implementing an object model, which includes a hierarchy of object classes that can be instantiated in the client application. The object model includes class templates, each having an associated class type, and includes class functionality information—including required class functionality and elective class functionality—for custom classes that can be implemented in the client application. When a user requests the creation of a custom class of a specified type, a design-time environment is launched and class functionality information is retrieved for a class template associated with the type. A custom class is created, based on a class definition defining a class having the required class functionality and the specified elective class functionality. Objects belonging to the custom class can be instantiated from the runtime environment independent of the design-time environment.
Abstract:
Devices and methods for controlling and monitoring the progress and properties of multiple reactions are disclosed. The method and apparatus are especially useful for synthesizing, screening, and characterizing combinatorial libraries, but also offer significant advantages over conventional experimental reactors as well. The apparatus generally includes multiple vessels for containing reaction mixtures, and systems for controlling the stirring rate and temperature of individual reaction mixtures or groups of reaction mixtures. In addition, the apparatus may include provisions for independently controlling pressure in each vessel, and a system for injecting liquids into the vessels at a pressure different than ambient pressure. In situ monitoring of individual reaction mixtures provides feedback for process controllers, and also provides data for determining reaction rates, product yields, and various properties of the reaction products, including viscosity and molecular weight. Computer-based methods are disclosed for process monitoring and control, and for data display and analysis.