Abstract:
An electronic device may have a display. A display cover layer and a transparent inner display member may overlap a display pixel layer. The display pixel layer may have an array of display pixels for displaying images for a user. A touch sensor layer may be interposed between the display pixel layer and the transparent display member. A ferromagnetic shielding layer may be mounted below the display pixel layer. A flexible printed circuit containing coils of metal signal lines that form a near-field communications loop antenna may be interposed between the ferromagnetic shielding layer and the display pixel layer. A non-near-field antenna such as an inverted-F antenna may have a resonating element mounted on an inner surface of the display cover layer. The resonating element may be interposed between the transparent display member and the display cover layer.
Abstract:
In some embodiments, a data-secure sensor system includes one or more processors configured to receive sensor data (e.g., image data, audio data, etc.) and generate descriptive data based on the sensor data that corresponds to a physical area that corresponds to information about identified objects or activity in physical area, an input/output (I/O) port, and an I/O choke communicatively coupled between the one or more processors and the I/O port, the I/O choke configured to limit a communication bandwidth of the I/O port to a maximum data rate. The one or more processors can be configured to prevent the sensor data from being accessible via any external port of the data-secure camera system, including the I/O port, and allow the descriptive data to be accessible via the I/O port.
Abstract:
In some embodiments, a data-secure sensor system includes one or more processors configured to receive sensor data (e.g., image data, audio data, etc.) and generate descriptive data based on the sensor data that corresponds to a physical area that corresponds to information about identified objects or activity in physical area, an input/output (I/O) port, and an I/O choke communicatively coupled between the one or more processors and the I/O port, the I/O choke configured to limit a communication bandwidth of the I/O port to a maximum data rate. The one or more processors can be configured to prevent the sensor data from being accessible via any external port of the data-secure camera system, including the I/O port, and allow the descriptive data to be accessible via the I/O port.
Abstract:
An interface circuit in an electronic device may contend for access to a shared communication channel on behalf of the electronic device and a recipient electronic device, where the access has a duration. Then, the electronic device may provide a schedule frame intended for the recipient electronic device that includes information that specifies one or more time slots during the duration that are associated with the recipient electronic device and one or more communication functions of the recipient electronic device in the one or more time slots. Moreover, the electronic device may provide a data frame with data intended for the recipient electronic device. In response, the electronic device may receive a response frame associated with the recipient electronic device, where the response frame is received during at least one of the one or more time slots.
Abstract:
An electronic device includes an antenna configured to receive a wireless signal. The electronic device also includes a first correlator configured to correlate the wireless signal to a communication of a first wireless protocol type and a second correlator configured to correlate the wireless signal to a communication of a second wireless protocol type.
Abstract:
This application relates to systems, methods, and apparatus for using a computing device to perform payment transactions while the computing device is operating in a low power wallet mode during a low battery state of the computing device. During a low power wallet mode, various subsystems are prevented from receiving current from a battery of the computing device, while a near field communication (NFC) system of the computing device is provided with an operating current for detecting target systems. A target system and the NFC system can communicate during the low power wallet mode of the computing device, thereby allowing a user of the computing device to conduct payment transactions when the computing device is in a low power wallet mode. Such payment transactions can be useful if the user is ever stranded without enough power to fully operate the computing device and needs to pay for transportation.
Abstract:
Systems, methods, and computer-readable media for managing near field communications during a low power management mode of an electronic device are provided that may make credentials of a near field communication (“NFC”) component appropriately secure and appropriately accessible while also limiting the power consumption of the NFC component and of other components of the electronic device.
Abstract:
An electronic device may have a display. A display cover layer and a transparent inner display member may overlap a display pixel layer. The display pixel layer may have an array of display pixels for displaying images for a user. A touch sensor layer may be interposed between the display pixel layer and the transparent display member. A ferromagnetic shielding layer may be mounted below the display pixel layer. A flexible printed circuit containing coils of metal signal lines that form a near-field communications loop antenna may be interposed between the ferromagnetic shielding layer and the display pixel layer. A non-near-field antenna such as an inverted-F antenna may have a resonating element mounted on an inner surface of the display cover layer. The resonating element may be interposed between the transparent display member and the display cover layer.
Abstract:
This application relates to systems, methods, and apparatus for using a computing device to perform payment transactions while the computing device is operating in a low power wallet mode during a low battery state of the computing device. During a low power wallet mode, various subsystems are prevented from receiving current from a battery of the computing device, while a near field communication (NFC) system of the computing device is provided with an operating current for detecting target systems. A target system and the NFC system can communicate during the low power wallet mode of the computing device, thereby allowing a user of the computing device to conduct payment transactions when the computing device is in a low power wallet mode. Such payment transactions can be useful if the user is ever stranded without enough power to fully operate the computing device and needs to pay for transportation.
Abstract:
Implementations of the subject technology provide object detection and/or classification for electronic devices. Object detection and/or classification can be performed using a radar sensor of an electronic device. The electronic device may be a portable electronic device. In some examples, object classification using a radar sensor can be based on an identification of user motion using radar signals and/or based on extraction of surface features from the radar signals. In some examples, object classification using a radar sensor can be based on time-varying surface features extracted from the radar signals. Surface features that can be extracted from the radar signals include a radar cross-section (RCS), a micro-doppler signal, a range, and/or one or more angles associated with one or more surfaces of the object.