Abstract:
Techniques are disclosed for cross-polarization-based object detection and classification. One example includes a system implemented for cross-polarization-based object detection and classification. The system includes a first transmitter antenna configured for radiating a first millimeter wave electromagnetic signal, where the first millimeter wave electromagnetic signal including a first polarization. The system further includes a first receiver antenna configured for receiving a second millimeter wave electromagnetic signal, the second millimeter wave electromagnetic signal including a second polarization. The system further includes a processing circuitry configured to detect an object based at least in part on the second millimeter wave electromagnetic signal, the object being impacted by the first millimeter wave electromagnetic signal to cause the second millimeter wave electromagnetic signal to reflect off the object.
Abstract:
Systems, methods, and computer-readable media for managing near field communications during a low power management mode of an electronic device are provided that may make credentials of a near field communication (“NFC”) component appropriately secure and appropriately accessible while also limiting the power consumption of the NFC component and of other components of the electronic device.
Abstract:
An electronic device includes an antenna configured to receive a wireless signal. The electronic device also includes a first correlator configured to correlate the wireless signal to a communication of a first wireless protocol type and a second correlator configured to correlate the wireless signal to a communication of a second wireless protocol type.
Abstract:
An electronic device may have multiple near-field communications antennas. Multiplexer circuitry may have a transceiver port that is coupled to a near-field communications transceiver, and multiple antenna ports coupled to respective near-field communications antennas. Non-near-field communications antennas may be used by non-near-field communications circuitry. The electronic device may have a housing with opposing first and second ends and a display. One of the near-field communications antennas and one of the non-near-field communications antenna may be formed from shared antenna structures at the first end. Another of the near-field communications antennas and another of the non-near-field communications antennas may be formed from shared antenna structures at the second end. An additional near field communications antenna may be overlapped by the display.
Abstract:
Systems, methods, and computer-readable media for managing near field communications during a low power management mode of an electronic device are provided that may make credentials of a near field communication (“NFC”) component appropriately secure and appropriately accessible white also limiting the power consumption of the NFC component and of other components of the electronic device.
Abstract:
An electronic device may have a display. A display cover layer and a transparent inner display member may overlap a display pixel layer. The display pixel layer may have an array of display pixels for displaying images for a user. A touch sensor layer may be interposed between the display pixel layer and the transparent display member. A ferromagnetic shielding layer may be mounted below the display pixel layer. A flexible printed circuit containing coils of metal signal lines that form a near-field communications loop antenna may be interposed between the ferromagnetic shielding layer and the display pixel layer. A non-near-field antenna such as an inverted-F antenna may have a resonating element mounted on an inner surface of the display cover layer. The resonating element may be interposed between the transparent display member and the display cover layer.
Abstract:
In some embodiments, a data-secure sensor system includes one or more processors configured to receive sensor data (e.g., image data, audio data, etc.) and generate descriptive data based on the sensor data that corresponds to a physical area that corresponds to information about identified objects or activity in physical area, an input/output (I/O) port, and an I/O choke communicatively coupled between the one or more processors and the I/O port, the I/O choke configured to limit a communication bandwidth of the I/O port to a maximum data rate. The one or more processors can be configured to prevent the sensor data from being accessible via any external port of the data-secure camera system, including the I/O port, and allow the descriptive data to be accessible via the I/O port.
Abstract:
In some embodiments, a data-secure sensor system includes one or more processors configured to receive sensor data (e.g., image data, audio data, etc.) and generate descriptive data based on the sensor data that corresponds to a physical area that corresponds to information about identified objects or activity in physical area, an input/output (I/O) port, and an I/O choke communicatively coupled between the one or more processors and the I/O port, the I/O choke configured to limit a communication bandwidth of the I/O port to a maximum data rate. The one or more processors can be configured to prevent the sensor data from being accessible via any external port of the data-secure camera system, including the I/O port, and allow the descriptive data to be accessible via the I/O port.
Abstract:
An interface circuit in an electronic device may contend for access to a shared communication channel on behalf of the electronic device and a recipient electronic device, where the access has a duration. Then, the electronic device may provide a schedule frame intended for the recipient electronic device that includes information that specifies one or more time slots during the duration that are associated with the recipient electronic device and one or more communication functions of the recipient electronic device in the one or more time slots. Moreover, the electronic device may provide a data frame with data intended for the recipient electronic device. In response, the electronic device may receive a response frame associated with the recipient electronic device, where the response frame is received during at least one of the one or more time slots.
Abstract:
An electronic device includes an antenna configured to receive a wireless signal. The electronic device also includes a first correlator configured to correlate the wireless signal to a communication of a first wireless protocol type and a second correlator configured to correlate the wireless signal to a communication of a second wireless protocol type.