Abstract:
Examples disclosed herein relate to a method and apparatus for cleaning and repairing a substrate support having a heater disposed therein. A method includes (a) cleaning a surface of a substrate support having a bulk layer, the substrate support is disposed in a processing environment configured to process substrates. The cleaning process includes forming a plasma at a high temperature from a cleaning gas mixture having a fluorine containing gas and oxygen. The method includes (b) removing oxygen radicals from the processing environment with a treatment plasma formed from a treatment gas mixture. The treatment gas mixture includes the fluorine containing gas. The method further includes (c) repairing an interface of the substrate support and the bulk layer with a post-treatment plasma. The post-treatment plasma is formed from a post-treatment gas mixture including a nitrogen containing gas. The high temperature is greater than or equal to about 500 degrees Celsius.
Abstract:
Embodiments of the present disclosure generally relate to an apparatus and a method for cleaning a processing chamber. In one embodiment, a substrate support cover includes a bulk member coated with a fluoride coating. The substrate support cover is placed on a substrate support disposed in the processing chamber during a cleaning process. The fluoride coating does not react with the cleaning species. The substrate support cover protects the substrate support from reacting with the cleaning species, leading to reduced condensation formed on chamber components, which in turn leads to reduced contamination of the substrate in subsequent processes.
Abstract:
Techniques are disclosed for methods and apparatuses for reducing particle contamination formation in a high temperature processing chamber with a cooled gas feed block. The cooled gas feed has a body. The body has a main center portion having a top surface and a bottom surface. The body also has a flange extending outward from the bottom surface of the main center portion. A gas channel is disposed through the body. The gas channel has an inlet formed in the top surface of the main center portion and an outlet formed in the bottom surface of the main center portion. The body also has a center coolant channel. The center coolant channel has a first portion having an inlet formed in the top surface of the main center portion, and a second portion coupled to the first portion, the second portion having an outlet formed a sidewall of the flange.
Abstract:
Embodiments described herein generally relate to a plasma processing chamber and a detection apparatus for arcing events. In one embodiment, an arcing detection apparatus is disclosed herein. The arcing detection apparatus comprises a probe, a detection circuit, and a data log system. The probe positioned partially exposed to an interior volume of a plasma processing chamber. The detection circuit is configured to receive an analog signal from the probe and output an output signal scaling events present in the analog signal. The data log system is communicatively coupled to receive the output signal from the detection circuit. The data log system is configured to track arcing events occurring in the interior volume.
Abstract:
Embodiments described herein relate to apparatus and coating methods to reduce chamber arcing, for example, in HDP-CVD, PECVD, PE-ALD and Etch chambers. The apparatus include a ring shaped gas distributor used for in-situ deposition of coating materials, and a process chamber including the same. The ring shaped gas distributor includes a ring shaped body having at least one gas entrance port disposed on a first side thereof and a plurality of gas distribution ports disposed on a first surface of the ring shaped body. The plurality of gas distribution ports are arranged in a plurality of evenly distributed rows. The plurality of gas distribution ports in a first row of the plurality of evenly distributed rows is adapted to direct gas at an exit angle different from an exit angle of the plurality of gas distribution ports in a second row of the plurality of evenly distributed rows.
Abstract:
Implementations described herein protect a chamber components from corrosive cleaning gases used at high temperatures. In one embodiment, a chamber component includes at least a bellows that includes a top mounting flange coupled to a bottom mounting flange by a tubular accordion structure. A coating is disposed on an exterior surface of at least the tubular accordion structure. The coating includes of at least one of polytetrafluoroethylene, parylene C, parylene D, diamond-like carbon (DLC), yttria stabilized zirconia, nickel, alumina, or aluminum silicon magnesium yttrium oxygen compound. In one embodiment, the chamber component is a valve having an internal bellows.
Abstract:
A substrate carrier having a diamond-like carbon coating disposed thereon is provided. The diamond-like carbon coating may have the property of being substantially resistant to commonly used cleaning processes performed during the fabrication of photovoltaic cells, such as cleaning processes using an NF3 plasma. Additionally, a method of forming a diamond-like carbon coating on a substrate carrier is provided. The method includes positioning a substrate carrier in a processing chamber and forming a diamond-like carbon coating thereon. Forming the diamond-like carbon coating includes flowing a carbon-containing gas into a processing chamber and dissociating the carbon-containing gas. Furthermore, a method of quick removal of diamond-like carbon coatings from processing chamber walls, processing chamber components, substrate carriers, and other objects is provided.
Abstract:
Embodiments of the invention generally relate to methods for fabricating photovoltaic devices, and more particularly to methods for in-situ cleaning of a solar cell substrates. In one embodiment, a method of manufacturing a solar cell device is provided. The method comprises exposing a single or poly crystalline silicon substrate to a wet clean process to clean the surfaces of the crystalline substrate, loading the crystalline silicon substrate into a processing system having a vacuum environment, exposing at least one surface of the crystalline silicon substrate to an in-situ cleaning process in the vacuum environment of the processing system, and forming one or more passivation layers on at least one surface of the crystalline silicon substrate in the processing system.
Abstract:
A method and apparatus for forming a backside coating on a substrate to counteract stresses from a previously deposited film is disclosed. In one embodiment, a method for flattening a bowed substrate includes providing a substrate having a film stack formed on a first major surface thereof, wherein the substrate comprises a bowed orientation, and forming a coating a second major surface of the substrate, wherein the coating is configured to counter stresses produced by the film stack and flattens the substrate from the bowed orientation.
Abstract:
Embodiments described herein relate to apparatus and coating methods to reduce chamber arcing, for example, in HDP-CVD, PECVD, PE-ALD and Etch chambers. The apparatus include a ring shaped gas distributor used for in-situ deposition of coating materials, and a process chamber including the same. The ring shaped gas distributor includes a ring shaped body having at least one gas entrance port disposed on a first side thereof and a plurality of gas distribution ports disposed on a first surface of the ring shaped body. The plurality of gas distribution ports are arranged in a plurality of evenly distributed rows. The plurality of gas distribution ports in a first row of the plurality of evenly distributed rows is adapted to direct gas at an exit angle different from an exit angle of the plurality of gas distribution ports in a second row of the plurality of evenly distributed rows.