Abstract:
An electronic control unit (ECU), for use with an internal combustion engine, determines whether an abnormal combustion has occurred in the engine. The ECU uses a sensor signal amplifier to amplify a sensor signal from a sensor by changing an amplification power of the sensor signal and an A/D converter to convert the sensor signal amplified to a digital signal (i.e., a digitized sensor signal). The ECU uses an abnormal combustion detector to determine whether an abnormal combustion has occurred based on a characteristic of a waveform of the digitized sensor signal, and performs an abnormal combustion prevention control to prevent the abnormal combustion when an abnormal combustion is detected. An amplification controller is used to set the amplification power of the sensor signal amplifier based on the amplitude of the digitized sensor signal and a determination result of the abnormal combustion by the abnormal combustion detector.
Abstract:
A main body of an electronic part is formed in a rectangular pillared shape having a first and a second axial end surface. A first electrode is formed on the first axial end surface electrically and mechanically connected to a first wiring pattern formed on a board surface of a printed board. A second electrode is formed on the second axial end surface, to which one end of a fuse terminal is electrically connected. The other end of the fuse terminal is connected to a second wiring pattern of the printed board or a wiring member which is formed as an independent member from the printed board. A cut-off portion is formed in a connecting portion of the fuse terminal.
Abstract:
A main body of an electronic part has multiple electrodes, to which multiple terminals are respectively connected. The terminals include a fuse terminal and a normal terminal, each of which extends from the main body to a printed board so that the main body is supported at a position above and separated from a board surface of the printed board. The fuse terminal has an intermediate portion between an electrode-connected portion and a land-connected portion. The intermediate portion has a cut-off portion having a smaller width than other portions of the fuse terminal, so that the cut-off portion is melted down when excess current flows in the fuse terminal. The intermediate portion extends in a direction parallel to the board surface or in a direction inclined to the board surface at an angle smaller than 90 degrees.
Abstract:
An electronic control device includes one or more substrates, a casing, a plurality of circuit blocks, a common wire, a plurality of branch wires and two interrupt wires. The circuit blocks are disposed on the substrates and the substrates are disposed in the casing. The common wire is shared by the circuit blocks. The branch wires are respectively coupled between the circuit blocks and the common wire. The two interrupt wires are respectively coupled with two of the common wire and the branch wires for overcurrent protection of the circuit blocks.
Abstract:
An electronic control device includes a substrate, a plurality of component-mounted wires, a plurality of electronic components, a common wire, an interrupt wire and a protective layer. The component-mounted wires and the common wire are disposed on the substrate. The electronic components are mounted on the respective component-mounted wires and are coupled with the common wire. The interrupt wire is coupled between one component-mounted wire and the common wire, and is configured to melt in accordance with heat generated by an overcurrent to interrupt a coupling between the component-mounted wire and the common wire. The protective layer covers a surface of the substrate including the interrupt wire and defines an opening portion so that at least a portion of the interrupt wire is exposed.
Abstract:
A main body of an electronic part has multiple electrodes, to which multiple terminals are respectively connected. The terminals include a normal terminal and a fuse terminal, each of which extends from lands formed in a printed board so as to hold the main body at a position above and separated from a board surface of the printed board. The fuse terminal has multiple leg portions divided by slits. A first leg portion forms an electrical path portion having a cut-off portion, a width of which is smaller than that of other portions of the electrical path portion. A second leg portion has a first supporting leg and a second supporting leg, which are arranged at both sides of the first leg portion. Each of the supporting legs is connected to each of dummy lands formed in the printed board.
Abstract:
An electronic control device includes a turn-on restriction section capable of performing a restriction operation to restrict a turn-on speed of a switching element. The turn-on restriction section includes a comparator. The comparator receives a voltage of a main terminal of the switching element connected to a smoothing circuit and determines whether the voltage of the main terminal of the switching element reaches a threshold voltage. The turn-on restriction section performs the restriction operation for a predetermined time from a start of a turn-on period in which the switching element is turned on. The turn-on restriction section stops the restriction operation after the predetermined time has elapsed. The predetermined time is set to a time from the start of the turn-on period until the voltage of the main terminal of the switching element reaches the threshold voltage.
Abstract:
A switching power supply device includes a switching circuit and a control circuit. The switching circuit includes multiple switching elements, an inductor, and a capacitor. The control circuit compares an input voltage of the switching circuit with a predetermined threshold voltage set for an operation switch, and controls the switching circuit to perform the operation switch between at least two power control operations based on a comparison result. The at least two power control operations includes at least two of a buck operation, a buck -boost operation, or a boost operation. The control circuit further performs an inrush current restriction operation in response to the operation switch in order to restrict a flowing of an inrush current to one of the switching elements, which turns on and outputs the input voltage through the inductor in response to the operation switch.
Abstract:
A load driving device includes a driving switching element, an interrupting part, a short-circuiting switching element, and a protecting element. The driving switching element drives a load by controlling energization to the load. The interrupting part is disposed on an energizing path to the load. The interrupting part is not melted by a driving current to the load and is melted by an interrupting current larger than the driving current so as to interrupt energization to the load. The short-circuiting switching element is connected in parallel with the load and applies the interrupting current to the interrupting part. The protecting element protects the short-circuiting switching element.
Abstract:
An electrical control unit includes a constant voltage supply unit which supplies a constant voltage to a fuel injector, a boosted voltage supply unit which supplies a boosted voltage to the fuel injector, a control unit which controls supply timings of the constant voltage supply unit and the boosted voltage supply unit, and an interrupter which interrupts electric current when a short-circuit occurs in the boosted voltage supply unit. When an interruption of the interrupter is not detected, the boosted voltage supply unit supplies boosted voltage to start a fuel injection and the constant voltage supply unit supplies constant voltage to continue the fuel injection. When an interruption of the interrupter is detected, the constant voltage supply unit and the boosted voltage supply unit advance an interrupted power supply start timing relative to a non-interrupted power supply start timing to prevent delay of a fuel injection start timing.