Abstract:
A package formed from a multilayer structure which comprises a nonwoven layer; a coextruded multilayer film having a polyolefin-based sealant layer with a melting point of equal to or less than 127° C.; wherein the nonwoven layer forms an outer layer of the package is provided.
Abstract:
A stretch-modified elastomeric multilayer film comprising a core layer comprising a first ethylene-α-olefin block copolymer, wherein the first ethylene-α-olefin block copolymer comprises at least 50 mol. % ethylene, has a melt index (I2) from 0.5 g/10 min to 5 g/10 min, and has a density of 0.850 g/cc to 0.890 g/cc, and at least one outer layer independently comprising a second ethylene-α-olefin block copolymer and from 2.5 to 30 wt. % of an antiblock agent, wherein the second ethylene-α-olefin block copolymer comprises at least 50 mol. % ethylene, has a melt index (I2) from 0.5 g/10 min to 25 g/10 min, and has a density of 0.850 g/cc to 0.890 g/cc, wherein the density of the first ethylene-α-olefin block copolymer is equal to or greater than the density of the second ethylene-α-olefin block copolymer.
Abstract:
Fibers made a polyethylene composition, and method of making the same. The polyethylene composition comprises less than or equal to 100 percent by weight of the units derived from ethylene and less than 20 percent by weight of units derived from one or more α-olefin comonomers; wherein said polyethylene composition has a density in the range of 0.930 to 0.960 g/cm3, a molecular weight distribution (Mw/Mn) in the range of 1.70 to 3.5, a melt index (I2) in the range of 1 to 300 g/10 minutes, a molecular weight distribution (Mz/Mw) in the range of less than 2.5, a shear viscosity in the range of 20 to 250 Pascal-s at 3000 s−1 shear rate measured at 190° C., vinyl unsaturation of less than 0.1 vinyls per one thousand carbon atoms present in the backbone of said composition; and wherein the fiber is a monocomponent meltspun fiber.
Abstract:
A stretch-modified elastomeric multilayer film comprising a core layer comprising a first ethylene-α-olefin block copolymer, wherein the first ethylene-α-olefin block copolymer comprises at least 50 mol. % ethylene, has a melt index (12) from 0.5 g/10 min to 5 g/10 min, and has a density of 0.850 g/cc to 0.890 g/cc, and at least one outer layer independently comprising a second ethylene-α-olefin block copolymer and from 2.5 to 30 wt. % of an antiblock agent, wherein the second ethylene-α-olefin block copolymer comprises at least 50 mol. % ethylene, has a melt index (12) from 0.5 g/10 min to 25 g/10 min, and has a density of 0.850 g/cc to 0.890 g/cc, wherein the density of the first ethylene-α-olefin block copolymer is equal to or greater than the density of the second ethylene-α-olefin block copolymer.
Abstract:
A process for making a hydrophilic nonwoven structure comprising: forming a nonwoven structure comprising fibers; and exposing the nonwoven structure to an atmospheric plasma comprising an inert gas and a substance having a polar group and which can be vaporized or made into an aerosol and which forms a free radical upon exposure to a dielectric barrier discharge is provided. Also provided are nonwoven structures produced thereby and articles containing the nonwoven structures.
Abstract:
Fibers made a polyethylene composition, and method of making the same. The polyethylene composition comprises less than or equal to 100 percent by weight of the units derived from ethylene and less than 20 percent by weight of units derived from one or more α-olefin comonomers; wherein said polyethylene composition has a density in the range of 0.930 to 0.960 g/cm3, a molecular weight distribution (Mw/Mn) in the range of 1.70 to 3.5, a melt index (I2) in the range of 1 to 300 g/10 minutes, a molecular weight distribution (Mz/Mw) in the range of less than 2.5, a shear viscosity in the range of 20 to 250 Pascal-s at 3000 s−1 shear rate measured at 190° C., vinyl unsaturation of less than 0.1 vinyls per one thousand carbon atoms present in the backbone of said composition; and wherein the fiber is a monocomponent meltspun fiber.
Abstract:
The present invention is an extensible nonwoven comprising a polyolefin elastomer fiber wherein the surface of the fiber further comprises an inorganic filler or PDMS or combinations thereof, wherein the inorganic filler, if present, has D-90 particle size of 5 microns or less.
Abstract:
A method of forming an article that includes applying an aqueous dispersion to a porous substrate, wherein the aqueous dispersion includes a thermoplastic polymer, a dispersing agent, and water. The method includes removing at least a portion of the water, to result in an article formed that is breathable.
Abstract:
The instant invention provides bi-component fibers and fabrics made therefrom. The bi-component fiber according to the present invention comprises: (a) from 5 to 95 percent by weight of a first component comprising at least one or more first polymers, based on the total weight of the bi-component fiber; (b) from 5 to 95 percent by weight of a second component comprising at least an ethylene-based polymer composition, based on the total weight of the bicomponent fiber, wherein said ethylene-based polymer composition comprises; (i) less than or equal to 100 percent by weight of the units derived from ethylene; and (ii) less than 30 percent by weight of units derived from one or more α-olefin comonomers; wherein said ethylene-based polymer composition is characterized by having a Comonomer Distribution Constant in the range of from greater than from 100 to 400, a vinyl unsaturation of less than 0.1 vinyls per one thousand carbon atoms present in the backbone of the ethylene-based polymer composition; a zero shear viscosity ratio (ZSVR) in the range from 1 to less than 2; a density in the range of 0.920 to 0.970 g/cm3, a melt index (I2) in the range of from 10 to 40 g/10 minutes, a molecular weight distribution (Mw/Mn) in the range of from 1.8 to 3.0, and a molecular weight distribution (Mz/Mw) in the range of from less than 2; and wherein said bi-component fiber has a denier per filament in the range of from 0.5 to 10 g/9000 m.
Abstract:
The present invention relates to nonbreathable extrusion coated nonwoven structures. The structures comprise a nonwoven web comprised of monocomponent or bicomponent fibers having a coating comprising LDPE optionally blended with LLDPE and/or an elastomer. The monocomponent or bicomponent fibers comprise an ethylene based polymer, preferably at the surface of the fiber.