摘要:
Described embodiments provide a packet classifier for a network processor that generates tasks corresponding to each received packet. The packet classifier includes a scheduler to generate threads of contexts corresponding to tasks received by the packet classifier from a plurality of processing modules of the network processor. A multi-thread instruction engine processes instructions corresponding to threads received from the scheduler. The multi-thread instruction engine executes instructions by fetching an instruction of the thread from an instruction memory of the packet classifier and determining whether a breakpoint mode of the network processor is enabled. If the breakpoint mode is enabled, and breakpoint indicator of the fetched instruction is set, the packet classifier enters a breakpoint mode. Otherwise, if the breakpoint indicator of the fetched instruction is not set, the multi-thread instruction engine executes the fetched instruction.
摘要:
Described embodiments provide address translation for data stored in at least one shared memory of a network processor. A processing module of the network processor generates tasks corresponding to each of a plurality of received packets. A packet classifier generates contexts for each task, each context associated with a thread of instructions to apply to the corresponding packet. A first subset of instructions is stored in a tree memory within the at least one shared memory. A second subset of instructions is stored in a cache within a multi-thread engine of the packet classifier. The multi-thread engine maintains status indicators corresponding to the first and second subsets of instructions within the cache and the tree memory and, based on the status indicators, accesses a lookup table while processing a thread to translate between an instruction number and a physical address of the instruction in the first and second subset of instructions.
摘要:
Described embodiments provide a packet classifier for a network processor that generates tasks corresponding to each received packet. The packet classifier includes a scheduler to generate threads of contexts corresponding to tasks received by the packet classifier from a plurality of processing modules of the network processor. A multi-thread instruction engine processes instructions corresponding to threads received from the scheduler. The multi-thread instruction engine executes instructions by fetching an instruction of the thread from an instruction memory of the packet classifier and determining whether a breakpoint mode of the network processor is enabled. If the breakpoint mode is enabled, and breakpoint indicator of the fetched instruction is set, the packet classifier enters a breakpoint mode. Otherwise, if the breakpoint indicator of the fetched instruction is not set, the multi-thread instruction engine executes the fetched instruction.
摘要:
Described embodiments provide address translation for data stored in at least one shared memory of a network processor. A processing module of the network processor generates tasks corresponding to each of a plurality of received packets. A packet classifier generates contexts for each task, each context associated with a thread of instructions to apply to the corresponding packet. A first subset of instructions is stored in a tree memory within the at least one shared memory. A second subset of instructions is stored in a cache within a multi-thread engine of the packet classifier. The multi-thread engine maintains status indicators corresponding to the first and second subsets of instructions within the cache and the tree memory and, based on the status indicators, accesses a lookup table while processing a thread to translate between an instruction number and a physical address of the instruction in the first and second subset of instructions.
摘要:
Apparatus and methods implementing a hardware queue management device for reducing inter-core data transfer overhead by offloading request management and data coherency tasks from the CPU cores. The apparatus include multi-core processors, a shared L3 or last-level cache (“LLC”), and a hardware queue management device to receive, store, and process inter-core data transfer requests. The hardware queue management device further comprises a resource management system to control the rate in which the cores may submit requests to reduce core stalls and dropped requests. Additionally, software instructions are introduced to optimize communication between the cores and the queue management device.
摘要:
Technologies for a distributed hardware queue manager include a compute device having a procesor. The processor includes two or more hardware queue managers as well as two or more processor cores. Each processor core can enqueue or dequeue data from the hardware queue manager. Each hardware queue manager can be configured to contain several queue data structures. In some embodiments, the queues are addressed by the processor cores using virtual queue addresses, which are translated into physical queue addresses for accessing the corresponding hardware queue manager. The virtual queues can be moved from one physical queue in one hardware queue manager to a different physical queue in a different physical queue manager without changing the virtual address of the virtual queue.
摘要:
Described embodiments process multiple threads of commands in a network processor. One or more tasks are generated corresponding to each received packet, and the tasks are provided to a packet processor module (MPP). A scheduler associates each received task with a command flow. A thread updater writes state data corresponding to the flow to a context memory. The scheduler determines an order of processing of the command flows. When a processing thread of a multi-thread processor is available, the thread updater loads, from the context memory, state data for at least one scheduled flow to one of the multi-thread processors. The multi-thread processor processes a next command of the flow based on the loaded state data. If the processed command requires operation of a co-processor module, the multi-thread processor sends a co-processor request and switches command processing from the first flow to a second flow.
摘要:
Described embodiments provide a network processor having a plurality of processing modules coupled to a system cache and a shared memory. A memory manager allocates blocks of the shared memory to a requesting one of the processing modules. The allocated blocks store data corresponding to packets received by the network processor. The memory manager maintains a reference count for each allocated memory block indicating a number of processing modules accessing the block. One of the processing modules reads the data stored in the allocated memory blocks, stores the read data to corresponding entries of the system cache and operates on the data stored in the system cache. Upon completion of operation on the data, the processing module requests to decrement the reference count of each memory block. Based on the reference count, the memory manager invalidates the entries of the system cache and deallocates the memory blocks.
摘要:
Described embodiments provide a packet classifier of a network processor having a plurality of processing modules. A scheduler generates a thread of contexts for each tasks generated by the network processor corresponding to each received packet. The thread corresponds to an order of instructions applied to the corresponding packet. A multi-thread instruction engine processes the threads of instructions. A function bus interface inspects instructions received from the multi-thread instruction engine for one or more exception conditions. If the function bus interface detects an exception, the function bus interface reports the exception to the scheduler and the multi-thread instruction engine. The scheduler reschedules the thread corresponding to the instruction having the exception for processing in the multi-thread instruction engine. Otherwise, the function bus interface provides the instruction to a corresponding destination processing module of the network processor.
摘要:
Described embodiments provide coherent processing of hash operations of a network processor having a plurality of processing modules. A hash processor of the network processor receives hash operation requests from the plurality of processing modules. A hash table identifier and bucket index corresponding to the received hash operation request are determined. An active index list is maintained for active hash operations for each hash table identifier and bucket index. If the hash table identifier and bucket index of the received hash operation request are in the active index list, the received hash operation request is deferred until the hash table identifier and bucket index corresponding to the received hash operation request clear from the active index list. Otherwise, the active index list is updated with the hash table identifier and bucket index of the received hash operation request and the received hash operation request is processed.