Abstract:
Disclosed herein are methods and systems to isolate nitrogen from a mixture of gases. In an embodiment, a method of isolating nitrogen from a gaseous mixture involves contacting the gaseous mixture with a superparamagnetic catalyst to form a reaction mixture, and exposing the reaction mixture to a fluctuating magnetic field at ambient conditions.
Abstract:
Disclosed herein are methods and systems to produce ammonia from nitrogen and water. In an embodiment, a method of producing ammonia involves contacting nitrogen, water, and at least one superparamagnetic catalyst to form a mixture, and exposing the mixture to a fluctuating magnetic field. In some embodiments, the superparamagnetic catalyst is BVO2FeO2.
Abstract:
Methods of forming transition metal dichalcogenide aerogels are provided. Some methods include adding at least one solvent to one or more two-dimensional transition metal dichalcogenide sheets to form a transition metal dichalcogenide solution and freeze drying the transition metal dichalcogenide solution to form frozen transition metal dichalcogenide. The methods also include heating the frozen transition metal dichalcogenide to form a transition metal dichalcogenide aerogel.
Abstract:
Disclosed herein are reusable composite materials for scavenging oxygen, methods of preparing the composite materials and method of using them. The composite materials contain porphyrin molecules and a metal oxide comprised within the porphyrin. The metal oxide is oxidizable in the presence of oxygen and the oxidation of the metal oxide is reversible upon exposure of the composite material to light of a fixed wavelength.
Abstract:
Inorganic-organic polymer nanocomposites are provided. The inorganic-organic polymer nanocomposite includes a polymeric matrix and a plurality of metal nanoparticles embedded within the polymeric matrix. The plurality of metal nanoparticles are configured to provide cooling of the nanocomposite upon exposure to photoradiation.
Abstract:
An adhesive material produced by contacting a catechol with an amine may be stable under heated conditions and produce minimal outgassing under vacuum. The catechol may be an un-substituted catechol or a substituted catechol, such as hydroxychavicol. In some examples, the catechol may be derived from botanical sources. The amine may be a diamine, such as phenylene diamine. The adhesive polymer may form dendritic structures or macrocyclic structures. A joined article may be fabricated from two materials by applying the adhesive to a prepared surface of at least one of the materials, and the two materials may be placed together with the adhesive between them. The adhesive in the joined article may be cured at ambient temperature or under heating conditions.
Abstract:
Thermoelectric cooling devices and methods for producing and using the devices are disclosed, wherein the cooling devices include a polymer composite of a polymer and nanoparticles of at least one paramagnetic material. A source for producing an electric field within the polymer composite produces a corresponding heat transfer from one surface of the composite to the other.
Abstract:
A nano-composite material for coating glass, as well as methods of its manufacture and use, are disclosed. The composite may be composed of a first metal oxide bridging a silicone oil moiety and an anionic surfactant moiety, and a second metal oxide bound to the silicone oil moiety. The composite may be fabricated by heating a first metal oxide and a second metal oxide with silicone oil, followed by the addition of a mixture of the surfactant and an oxidizing solution. The composite may be mixed with a suitable solvent and applied to a hot glass sheet. A glass coated with such a composite may transmit visible light, absorb some ultraviolet light, and reflect some near infrared light. The optical characteristics of the coated glass may be used to reduce heat in a glass-enclosed area by reducing the amount of infrared and ultraviolet light transmitted through the glass.
Abstract:
Described herein is a method of converting a first alcohol to a second alcohol that includes forming a mixture including a superparamagnetic catalyst and a feedstock, wherein the feedstock includes the first alcohol, and exposing the mixture to a fluctuating magnetic field to form a product, wherein the product includes a second alcohol having a longer carbon chain length than the first alcohol. A flow-through method is described for converting a first alcohol to a second alcohol, wherein the second alcohol has a longer carbon chain length than the first alcohol. Also described is a method of converting glycerol to butanol that includes forming a mixture including a superparamagnetic catalyst and a feedstock, wherein the feedstock includes glycerol, and exposing the mixture to a fluctuating magnetic field to form a product, wherein the product includes butanol. A flow-through method is described for converting glycerol to butanol.
Abstract:
A magnetic polymer nanocomposite is provided. The magnetic polymer nanocomposite includes a polymeric matrix and plurality of magnetic nanoparticles embedded within the polymeric matrix. The polymeric matrix of the magnetic polymer nanocomposite is configured to adsorb water molecules as air is passed through the nanocomposite and is configured to release the adsorbed water molecules on exposure of the nanocomposite to an electromagnetic field.