摘要:
Methods and apparatus are provided for a MOSFET (50, 99, 199) exhibiting increased source-drain breakdown voltage (BVdss). Source (S) (70) and drain (D) (76) are spaced apart by a channel (90) underlying a gate (84) and one or more carrier drift spaces (92, 92′) serially located between the channel (90) and the source (70, 70′) or drain (76, 76′). A buried region (96, 96′) of the same conductivity type as the drift space (92, 92′) and the source (70, 70′) or drain (76, 76′) is provided below the drift space (92, 92′), separated therefrom in depth by a narrow gap (94, 94′) and ohmically coupled to the source (70, 70′) or drain (76, 76′). Current flow (110) through the drift space produces a potential difference (Vt) across this gap (94, 94′). As the S-D voltage (Vo) and current (109, Io) increase, this difference (Vt) induces high field conduction between the drift space (92, 92′) and the buried region (96, 96′) and diverts part (112, It) of the S-D current (109, Io) through the buried region (96, 96′) and away from the near surface portions of the drift space (92, 92′) where breakdown generally occurs. Thus, BVdss is increased.
摘要:
Methods and apparatus are provided for a MOSFET (50, 99, 199) exhibiting increased source-drain breakdown voltage (BVdss). Source (S) (70) and drain (D) (76) are spaced apart by a channel (90) underlying a gate (84) and one or more carrier drift spaces (92, 92′) serially located between the channel (90) and the source (70, 70′) or drain (76, 76′). A buried region (96, 96′) of the same conductivity type as the drift space (92, 92′) and the source (70, 70′) or drain (76, 76′) is provided below the drift space (92, 92′), separated therefrom in depth by a narrow gap (94, 94′) and ohmically coupled to the source (70, 70′) or drain (76, 76′). Current flow (110) through the drift space produces a potential difference (Vt) across this gap (94, 94′). As the S-D voltage (Vo) and current (109, Io) increase, this difference (Vt) induces high field conduction between the drift space (92, 92′) and the buried region (96, 96′) and diverts part (112, It) of the S-D current (109, Io) through the buried region (96, 96′) and away from the near surface portions of the drift space (92, 92′) where breakdown generally occurs. Thus, BVdss is increased.
摘要:
A Bipolar Junction Transistor (BJT) that reduces the variation in the current gain through the use of a trench pullback structure. The trench pullback structure is comprised of a trench and an active region. The trench reduces recombination in the emitter-base region through increasing the distance charge carriers must travel between the emitter and the base. The trench also reduces recombination by reducing the amount of interfacial traps that the electrons injected from the emitter are exposed to. Further, the trench is pulled back from the emitter allowing an active region where electrons injected from a sidewall of the emitter can contribute to the overall injected emitter current. This structure offers the same current capability and current gain as a device without the trench between the emitter and the base while reducing the current gain variation.
摘要:
A structure protects CMOS logic from substrate minority carrier injection caused by the inductive switching of a power device. A single Integrated Circuit (IC) supports one or more power MOSFETs and one or more arrays of CMOS logic. A highly doped ring is formed between the drain of the power MOSFET and the CMOS logic array to provide a low resistance path to ground for the injected minority carriers. Under the CMOS logic is a highly doped buried layer to form a region of high recombination for the injected minority carriers. One or more CMOS devices are formed above the buried layer. The substrate is a resistive and the injected current is attenuated. The well in which the CMOS devices rest forms a low resistance ground plane for the injected minority carriers.
摘要:
Methods and apparatus are provided for a MOSFET (50, 99, 199) exhibiting increased source-drain breakdown voltage (BVdss). Source (S) (70) and drain (D) (76) are spaced apart by a channel (90) underlying a gate (84) and one or more carrier drift spaces (92, 92′) serially located between the channel (90) and the source (70, 70′) or drain (76, 76′). A buried region (96, 96′) of the same conductivity type as the drift space (92, 92′) and the source (70, 70′) or drain (76, 76′) is provided below the drift space (92, 92′), separated therefrom in depth by a narrow gap (94, 94′) and ohmically coupled to the source (70, 70′) or drain (76, 76′). Current flow (110) through the drift space produces a potential difference (Vt) across this gap (94, 94′). As the S-D voltage (Vo) and current (109, Io) increase, this difference (Vt) induces high field conduction between the drift space (92, 92′) and the buried region (96, 96′) and diverts part (112, It) of the S-D current (109, Io) through the buried region (96, 96′) and away from the near surface portions of the drift space (92, 92′) where breakdown generally occurs. Thus, BVdss is increased.
摘要:
Methods and apparatus are provided for a MOSFET (50, 99, 199) exhibiting increased source-drain breakdown voltage (BVdss). Source (S) (70) and drain (D) (76) are spaced apart by a channel (90) underlying a gate (84) and one or more carrier drift spaces (92, 92′) serially located between the channel (90) and the source (70, 70′) or drain (76, 76′). A buried region (96, 96′) of the same conductivity type as the drift space (92, 92′) and the source (70, 70′) or drain (76, 76′) is provided below the drift space (92, 92′), separated therefrom in depth by a narrow gap (94, 94′) and ohmically coupled to the source (70, 70′) or drain (76, 76′). Current flow (110) through the drift space produces a potential difference (Vt) across this gap (94, 94′). As the S-D voltage (Vo) and current (109, Io) increase, this difference (Vt) induces high field conduction between the drift space (92, 92′) and the buried region (96, 96′) and diverts part (112, It) of the S-D current (109, Io) through the buried region (96, 96′) and away from the near surface portions of the drift space (92, 92′) where breakdown generally occurs. Thus, BVdss is increased.
摘要:
A Schottky diode includes a device structure having a central portion and a plurality of fingers. Distal portions of the fingers overlie leakage current control (LCC) regions. An LCC region is relatively narrow and deep, terminating in proximity to a buried layer of like polarity. Under reverse bias, depletion regions forming in an active region lying between the buried layer and the LCC regions occupy the entire extent of the active region and thereby provide a carrier depleted wall. An analogous depletion region occurs in the active region residing between any pair of adjacent fingers. If the fingers include latitudinal oriented fingers and longitudinal oriented fingers, depletion region blockades in three different orthogonal orientations may occur. The formation of the LCC regions may include the use of a high dose, low energy phosphorous implant using an LCC implant mask and the isolation structures as an additional hard mask.
摘要:
A device includes a semiconductor substrate, first and second electrodes supported by the semiconductor substrate, laterally spaced from one another, and disposed at a surface of the semiconductor substrate to form an Ohmic contact and a Schottky junction, respectively. The device further includes a conduction path region in the semiconductor substrate, having a first conductivity type, and disposed along a conduction path between the first and second electrodes, a buried region in the semiconductor substrate having a second conductivity type and disposed below the conduction path region, and a device isolating region electrically coupled to the buried region, having the second conductivity type, and defining a lateral boundary of the device. The device isolating region is electrically coupled to the second electrode such that a voltage at the second electrode during operation is applied to the buried region to deplete the conduction path region.
摘要:
A single-poly non-volatile memory includes a PMOS select transistor (210) formed with a select gate (212), and P+ source and drain regions (211, 213) formed in a shared n-well region (240), a serially connected PMOS floating gate transistor (220) formed with part of a p-type floating gate layer (222) and P+ source and drain regions (221, 223) formed in the shared n-well region (240), and a coupling capacitor (230) formed over a p-well region (250) and connected to the PMOS floating gate transistor (220), where the coupling capacitor (230) includes a first capacitor plate formed with a second part of the p-type floating gate layer (222) and an underlying portion of the p-well region (250).
摘要:
A method of fabricating a Schottky diode having an integrated junction field-effect transistor (JFET) device includes forming a conduction path region in a semiconductor substrate along a conduction path of the Schottky diode. The conduction path region has a first conductivity type. A lateral boundary of an active area of the Schottky diode is defined by forming a well of a device isolating structure in the semiconductor substrate having a second conductivity type. An implant of dopant of the second conductivity type is conducted to form a buried JFET gate region in the semiconductor substrate under the conduction path region. The implant is configured to further form the device isolating structure in which the Schottky diode is disposed.