摘要:
A single-poly non-volatile memory includes a PMOS select transistor (210) formed with a select gate (212), and P+ source and drain regions (211, 213) formed in a shared n-well region (240), a serially connected PMOS floating gate transistor (220) formed with part of a p-type floating gate layer (222) and P+ source and drain regions (221, 223) formed in the shared n-well region (240), and a coupling capacitor (230) formed over a p-well region (250) and connected to the PMOS floating gate transistor (220), where the coupling capacitor (230) includes a first capacitor plate formed with a second part of the p-type floating gate layer (222) and an underlying portion of the p-well region (250).
摘要:
A single-poly non-volatile memory includes a PMOS select transistor (210) formed with a select gate (212), and P+ source and drain regions (211, 213) formed in a shared n-well region (240), a serially connected PMOS floating gate transistor (220) formed with part of a p-type floating gate layer (222) and P+ source and drain regions (221, 223) formed in the shared n-well region (240), and a coupling capacitor (230) formed over a p-well region (250) and connected to the PMOS floating gate transistor (220), where the coupling capacitor (230) includes a first capacitor plate formed with a second part of the p-type floating gate layer (222) and an underlying portion of the p-well region (250).
摘要:
A differential pair sensing circuit (300) includes control gates (306, 316) for separately programming a reference transistor (350) and a chemically-sensitive transistor (351) to a desired threshold voltage Vt to eliminate the mismatch between the transistors in order to increase the sensitivity and/or accuracy of the sensing circuit without increasing the circuit size.
摘要:
A device includes a semiconductor substrate having a first conductivity type, a device isolating region in the semiconductor substrate, defining an active area, and having a second conductivity type, a body region in the active area and having the first conductivity type, and a drain region in the active area and spaced from the body region to define a conduction path of the device, the drain region having the second conductivity type. The device isolating region and the body region are spaced from one another to establish a first breakdown voltage lower than a second breakdown voltage in the conduction path.
摘要:
A device includes a semiconductor substrate having a first conductivity type, a device isolating region in the semiconductor substrate, defining an active area, and having a second conductivity type, a body region in the active area and having the first conductivity type, and a drain region in the active area and spaced from the body region to define a conduction path of the device, the drain region having the second conductivity type. The device isolating region and the body region are spaced from one another to establish a first breakdown voltage lower than a second breakdown voltage in the conduction path.
摘要:
A device includes a semiconductor substrate, a body region in the semiconductor substrate, having a first conductivity type, and including a channel region through which charge carriers flow, a drain region in the semiconductor substrate, having a second conductivity type, and spaced from the body region along a first lateral dimension, a drift region in the semiconductor substrate, having the second conductivity type, and electrically coupling the drain region to the channel region, and a plurality of floating reduced surface field (RESURF) regions in the semiconductor substrate adjacent the drift region, having the first conductivity type, and around which the charge carriers drift through the drift region under an electric field arising from a voltage applied to the drain region. Adjacent floating RESURF regions of the plurality of floating RESURF regions are spaced from one another along a second lateral dimension of the device by a respective gap.
摘要:
An ISFET includes a control gate coupled to a floating gate in a CMOS device. The control gate, for example, a poly-to-well capacitor, is configured to receive a bias voltage and effect movement of a trapped charge between the control gate and the floating gate. The threshold voltage of the ISFET can therefore by trimmed to a predetermined value, thereby storing the trim information (the amount of trapped charge in the floating gate) within the ISFET itself.
摘要:
Semiconductor device structures and related fabrication methods are provided. An exemplary semiconductor device structure includes a body well region having a first conductivity type, a drift region and a source region each having a second conductivity type, where a channel portion of the body well region resides laterally between the source region and a first portion of the drift region that is adjacent to the channel portion. A gate structure overlies the channel portion and the adjacent portion of the drift region. A portion of the gate structure overlying the channel portion proximate the source region has the second conductivity type. Another portion of the gate structure that overlies the adjacent portion of the drift region has a different doping, and overlaps at least a portion of the channel portion, with the threshold voltage associated with the gate structure being influenced by the amount of overlap.
摘要:
Embodiments of semiconductor devices and driver circuits include a semiconductor substrate having a first conductivity type, an isolation structure (including a sinker region and a buried layer), an active device within a portion of the substrate contained by the isolation structure, and a resistor circuit. The buried layer is positioned below the top substrate surface, and has a second conductivity type. The sinker region extends between the top substrate surface and the buried layer, and has the second conductivity type. The active device includes a body region, which is separated from the isolation structure by a portion of the semiconductor substrate having the first conductivity type. The resistor circuit is connected between the isolation structure and the body region. The resistor circuit may include one or more resistor networks and, optionally, a Schottky diode and/or one or more PN diode(s) in series and/or parallel with the resistor network(s).
摘要:
A tunable antifuse element (102, 202, 204, 504, 952) includes a substrate material (101) having an active area (106) formed in a surface, a gate electrode (104) having at least a portion positioned above the active area (106), and a dielectric layer (110) disposed between the gate electrode (104) and the active area (106). The dielectric layer (110) includes a tunable stepped structure (127). During operation, a voltage applied between the gate electrode (104) and the active area (106) creates a current path through the dielectric layer (110) and a rupture of the dielectric layer (110) in a rupture region (130). The dielectric layer (110) is tunable by varying the stepped layer thicknesses and the geometry of the layer.