摘要:
A substrate processing method that can selectively remove deposit produced through dry etching of silicon. A substrate has a silicon base material and a hard mask that is made of a silicon nitride film and/or a silicon oxide film and formed on the silicon base material, the hard mask having an opening to which at least part of the silicon base material is exposed. A trench corresponding to the opening is formed in the silicon base material through dry etching using plasma produced from halogenated gas. After the dry etching, the substrate is heated to a temperature of not less than 200° C., and then hydrogen fluoride gas and helium gas are supplied toward the substrate.
摘要:
A substrate processing apparatus that can appropriately carry out desired plasma processing on a substrate. The substrate is accommodated in an accommodating chamber. An ion trap partitions the accommodating chamber into a plasma producing chamber and a substrate processing chamber. High-frequency antennas are disposed in the plasma producing chamber. A process gas is introduced into the plasma producing chamber. The substrate is mounted on a mounting stage disposed in the substrate processing chamber, and a bias voltage is applied to the mounting stage. The ion trap has grounded conductors and insulating materials covering surfaces of the conductors.
摘要:
A substrate processing method includes performing a deposition process of depositing a thin film on the substrate while depressurizing the inside of the processing chamber and introducing the gas thereinto; and, while the deposition process is being performed, irradiating light, which is transmitted through a monitoring window installed at the processing chamber, toward the inside of the processing chamber through the monitoring window, and monitoring a reflection light intensity of reflection light by receiving the reflection light through the monitoring window. The substrate processing method further includes measuring a temporal variation in the reflection light intensity during the deposition process and calculating a termination time of the deposition process based on a measurement value of the temporal variation; and terminating the deposition process by setting the termination time as an end point of the deposition process.
摘要:
A substrate processing method includes performing a deposition process of depositing a thin film on the substrate while depressurizing the inside of the processing chamber and introducing the gas thereinto; and, while the deposition process is being performed, irradiating light, which is transmitted through a monitoring window installed at the processing chamber, toward the inside of the processing chamber through the monitoring window, and monitoring a reflection light intensity of reflection light by receiving the reflection light through the monitoring window. The substrate processing method further includes measuring a temporal variation in the reflection light intensity during the deposition process and calculating a termination time of the deposition process based on a measurement value of the temporal variation; and terminating the deposition process by setting the termination time as an end point of the deposition process.
摘要:
A substrate processing method that can remove a silicon nitride film without damaging a thermally-oxidized film. A substrate having at least a thermally-oxidized film and a silicon nitride film formed on the thermally-oxidized film is heated to a temperature of not less than 60° C. Then, hydrogen fluoride gas is supplied toward the substrate.
摘要:
A substrate processing method that can remove a silicon nitride film without damaging a thermally-oxidized film. A substrate having at least a thermally-oxidized film and a silicon nitride film formed on the thermally-oxidized film is heated to a temperature of not less than 60° C. Then, hydrogen fluoride gas is supplied toward the substrate.
摘要:
An amorphous carbon film, which has excellent etching resistance and is capable of reducing reflectance when a resist film is exposed to light, is form. A method for manufacturing a semiconductor device includes forming an object film to be etched on a wafer, supplying a process gas containing a CO gas and an N2 gas into a processing container, forming an amorphous carbon nitride film from the supplied CO gas and N2 gas, forming a silicon oxide film on the amorphous carbon nitride film, forming an ArF resist film on the silicon oxide film, patterning the ArF resist film, etching the silicon oxide film by using the ArF resist film as a mask, etching the amorphous carbon nitride film by using the silicon oxide film as a mask, and etching the object film to be etched by using the amorphous carbon nitride film as a mask.
摘要:
The present invention provides a substrate processing method to process a substrate including at least a process layer, an intermediate layer, and a mask layer which are stacked in this order. The mask layer includes an aperture configured to expose a portion of the intermediate layer. The substrate processing method includes a material deposition step of depositing a material on a side surface of the aperture and exposing a portion of the process layer by etching the exposed portion of the intermediate layer by plasma generated from a deposit gas, and an etching step of etching the exposed portion of the process layer.
摘要:
According to a disclosed semiconductor device fabrication method according to one embodiment of the present invention, a layer having a line-and-space pattern extending in one direction is etched using another layer having a line-and-space pattern extending in another direction intersecting the one direction, thereby obtaining a mask having two-dimensionally arranged dots. An underlying layer is etched using the mask, thereby providing two-dimensionally arranged pillars.
摘要:
A method of processing a substrate having a processing target layer and an organic film serving as a mask layer includes a mineralizing process of mineralizing the organic film. The mineralizing process includes an adsorption process for allowing a silicon-containing gas to be adsorbed onto a surface of the organic film; and an oxidation process for oxidizing the adsorbed silicon-containing gas to be converted into a silicon oxide film. A monovalent aminosilane is employed as the silicon-containing gas.