Abstract:
A system, includes an emissions reduction system, including a catalyst system comprising an oxidation catalyst assembly and a selective catalytic reduction catalyst assembly. The system includes a diesel particulate fuel assembly, a first and a second sensor upstream of the catalyst system configured to measure emissions of the exhaust flow of the gas engine and a gas turbine before flowing into the catalyst system to generate a first and a second signal. A third sensor is downstream of the catalyst system to measure emissions of the catalyst system to generate a third signal, and a fourth and a fifth sensor disposed upstream and downstream of the DPF assembly to measure a change in pressure to generate a fourth signal and a controller to generate a first control signal to control an amount of reductant based on at least the first, second, and third signals.
Abstract:
A system includes an exhaust treatment system configured to treat emissions from a combustion engine via a catalyst. The system includes a controller configured to obtain an operating parameter indicating catalyst performance. The controller is configured to determine a deterioration factor indicating deterioration of the catalyst based at least in part on the operating parameter. The controller is configured to determine an adaptation term configured to modify an air-fuel ratio command for the combustion engine to account for the deterioration.
Abstract:
Various embodiments include systems adapted to monitor catalyst deterioration. Some embodiments include a catalyst deterioration detection system including a pre-catalytic converter gas sensor, a post-catalytic converter gas sensor, at least one computing device in communication with the pre-catalytic converter and post-catalytic converter gas sensors, the at least one computing device configured to monitor catalyst deterioration by performing actions including estimating a catalyst gas storage level by comparing a difference between a pre-catalytic converter gas level from the pre-catalytic converter gas sensor and a post-catalytic converter gas level from the post-catalytic converter gas sensor, comparing the estimated catalyst gas storage level to a baseline catalyst gas storage level and determining that the catalyst is deteriorated in response to the baseline catalyst gas storage level exceeding the estimated gas storage level by a threshold difference.
Abstract:
A system includes a controller configured to determine if a combustion engine is operating under a desired rich fuel condition. The controller is also configured, if the combustion engine is operating under the desired rich fuel condition, to monitor a catalytic activity within an ASC assembly that converts NH3 within treated exhaust gases from the combustion engine into N2 to determine whether the catalytic activity has been deactivated in the ASC assembly.
Abstract:
A passive mid bed air injection apparatus for an engine includes a three way catalyst positioned in an exhaust stream of the engine. The three way catalyst reduces NOx, CO and HC from the exhaust stream. The three way catalyst includes an ammonia slip catalyst positioned in the exhaust stream of the engine. The ammonia slip catalyst is positioned downstream from the three way catalyst and oxidizes NH3 and CO from the exhaust stream. The three way catalyst includes an oxygen input disposed between the three way catalyst and the ammonia slip catalyst such that the oxygen input delivers air downstream from the three way catalyst and upstream from the ammonia slip catalyst. The oxygen input receives the air from a charged side of a forced induction device and delivers the air to the exhaust stream entering the ammonia slip catalyst. An associated method also provided.
Abstract:
A system includes a hybrid power plant controller programmed to receive a plurality of signals representative of one or more operating parameters of a hybrid power plant. The hybrid power plant includes at least one gas turbine engine, at least one gas engine, and at least one catalyst system. The hybrid power plant controller is programmed to utilize closed-loop optimal control to generate one or more operational setpoints based on the one or more operating parameters for the hybrid power plant to optimize performance of the hybrid power plant. The hybrid power plant controller uses closed-loop optimal control to provide the one or more operational setpoints to respective controllers of the at least one gas turbine engine, the at least one gas engine, and the at least one catalyst system to control operation of the gas turbine engine, the gas engine, and the catalyst system.
Abstract:
In one embodiment, a system may include a gas turbine system. the gas turbine system includes a gas turbine, an after-treatment system that may receive exhaust gases from the gas turbine system, and a controller that may receive inputs and model operational behavior of an industrial plant based on the inputs. The industrial plant may include the gas turbine and the after-treatment system. The controller may also determine one or more operational parameter setpoints for the industrial plant, select the one or more operational parameter setpoints that reduce an output of a cost function, and apply the one or more operational parameter setpoints to control the industrial plant.
Abstract:
A system includes an engine comprising an EGR valve that recirculates a portion of exhaust gas, a data repository that stores a first look up and one or more engine operational parameters, an engine control unit operationally coupled to the engine and the data repository, wherein the engine control unit is configured to: determine a desired EGR flow rate reference of the portion of the exhaust gas based on the one or more engine operational parameters and the first look up table, determine a current estimated EGR flow rate based on the one or more engine operational parameters, determine a designated corrected EGR flow rate reference based on the desired EGR flow rate reference and a delta EGR flow rate, determine EGR flow rate error, and determine a percentage opening of the EGR valve based at least on the EGR flow rate error.
Abstract:
A system, includes an emissions reduction system, including a catalyst system comprising an oxidation catalyst assembly and a selective catalytic reduction catalyst assembly. The system includes a diesel particulate fuel assembly, a first and a second sensor upstream of the catalyst system configured to measure emissions of the exhaust flow of the gas engine and a gas turbine before flowing into the catalyst system to generate a first and a second signal. A third sensor is downstream of the catalyst system to measure emissions of the catalyst system to generate a third signal, and a fourth and a fifth sensor disposed upstream and downstream of the DPF assembly to measure a change in pressure to generate a fourth signal and a controller to generate a first control signal to control an amount of reductant based on at least the first, second, and third signals.
Abstract:
A system includes a hybrid power plant controller programmed to receive a plurality of signals representative of one or more operating parameters of a hybrid power plant. The hybrid power plant includes at least one gas turbine engine, at least one gas engine, and at least one catalyst system. The hybrid power plant controller is programmed to utilize closed-loop optimal control to generate one or more operational setpoints based on the one or more operating parameters for the hybrid power plant to optimize performance of the hybrid power plant. The hybrid power plant controller uses closed-loop optimal control to provide the one or more operational setpoints to respective controllers of the at least one gas turbine engine, the at least one gas engine, and the at least one catalyst system to control operation of the gas turbine engine, the gas engine, and the catalyst system.