Abstract:
A system includes an engine comprising an EGR valve that recirculates a portion of exhaust gas, a data repository that stores a first look up and one or more engine operational parameters, an engine control unit operationally coupled to the engine and the data repository, wherein the engine control unit is configured to: determine a desired EGR flow rate reference of the portion of the exhaust gas based on the one or more engine operational parameters and the first look up table, determine a current estimated EGR flow rate based on the one or more engine operational parameters, determine a designated corrected EGR flow rate reference based on the desired EGR flow rate reference and a delta EGR flow rate, determine EGR flow rate error, and determine a percentage opening of the EGR valve based at least on the EGR flow rate error.
Abstract:
Various methods and systems are provided for individually adjusting fueling to cylinders of an engine based on an output of a knock sensor coupled to each cylinder. In one embodiment, a method for a multi fuel engine comprises individually adjusting, for each cylinder of the engine, one or more of a gas flow rate of gaseous fuel, a diesel flow rate of diesel fuel, an injection or induction timing of gaseous fuel, or an injection timing of diesel fuel based on each of an output of an individual knock sensor for each cylinder, a knock threshold for current engine operating conditions, and a reference value of individual cylinder output.
Abstract:
A system includes a controller that has a processor. The processor is configured to receive a first signal from a first sensor indicative of a first exhaust measurement, wherein the first sensor is disposed at a catalytic converter system inlet of a catalytic converter system. The processor is further configured to derive one or more of an estimated length, estimated volume, or estimated transport delay of an exhaust conduit based on the first signal, wherein a first end of the exhaust conduit is connected to an engine outlet of a engine, and a second end of the exhaust conduit is connected to the catalytic converter system inlet; and to apply the one or more of estimated length, estimated volume, or estimated transport delay of the exhaust conduit during control of the engine.
Abstract:
In one embodiment, a method includes receiving, via a first sensor, a signal representative of at least one of a manifold pressure, a manifold temperature, or a manifold mass flow rate of a manifold. The method further includes deriving, via a manifold model and the first sensor signal, a gas concentration measurement at a first manifold section of the manifold. The method additionally includes applying the gas concentration measurement during operations of an engine, wherein the manifold is fluidly coupled to the engine.
Abstract:
In one embodiment, a method includes receiving, via a first sensor, a signal representative of at least one of a manifold pressure, a manifold temperature, or a manifold mass flow rate of a manifold. The method further includes deriving, via a manifold model and the first sensor signal, a gas concentration measurement at a first manifold section of the manifold. The method additionally includes applying the gas concentration measurement during operations of an engine, wherein the manifold is fluidly coupled to the engine.
Abstract:
A system includes an engine comprising an EGR valve that recirculates a portion of exhaust gas, a data repository that stores a first look up and one or more engine operational parameters, an engine control unit operationally coupled to the engine and the data repository, wherein the engine control unit is configured to: determine a desired EGR flow rate reference of the portion of the exhaust gas based on the one or more engine operational parameters and the first look up table, determine a current estimated EGR flow rate based on the one or more engine operational parameters, determine a designated corrected EGR flow rate reference based on the desired EGR flow rate reference and a delta EGR flow rate, determine EGR flow rate error, and determine a percentage opening of the EGR valve based at least on the EGR flow rate error.
Abstract:
A system includes a controller that has a processor configured to receive a first signal from a first oxygen sensor indicative of a first oxygen measurement, wherein the first oxygen sensor is disposed upstream of a catalytic converter system; and to receive a second signal from a second oxygen sensor indicative of a second oxygen measurement, wherein the second oxygen sensor is disposed downstream of the catalytic converter system; and to execute a catalyst estimator system, wherein the catalyst estimator system is configured to derive an oxygen storage estimate based on the first signal, the second signal, and a catalytic converter model. The processor is configured to derive a system oxygen storage setpoint for the catalytic converter system based on the catalytic converter model and the oxygen storage estimate.
Abstract:
A gas engine assembly includes a compressor, a combustion system, a bypass line and a control system. The control system is configured to control gas supply parameters based on a transportation delay value. The transportation delay value corresponds to a delay between a time when a gas supply control mechanism is adjusted and a time that gas having a corresponding adjustment of a gas characteristic is received at a predetermined point downstream from the gas supply control mechanism.
Abstract:
A system includes an exhaust treatment system configured to treat emissions from a combustion engine via a catalyst. The system includes a controller configured to obtain an operating parameter indicating catalyst performance. The controller is configured to determine a deterioration factor indicating deterioration of the catalyst based at least in part on the operating parameter. The controller is configured to determine an adaptation term configured to modify a reductant injection command for the combustion engine to account for the deterioration factor of the catalyst. The controller is configured to generate a signal indicating the adaptation term.
Abstract:
A system includes a controller that has a processor configured to receive a first signal from a first oxygen sensor indicative of a first oxygen measurement, wherein the first oxygen sensor is disposed upstream of a catalytic converter system; and to receive a second signal from a second oxygen sensor indicative of a second oxygen measurement, wherein the second oxygen sensor is disposed downstream of the catalytic converter system; and to execute a catalyst estimator system, wherein the catalyst estimator system is configured to derive an oxygen storage estimate based on the first signal, the second signal, and a catalytic converter model. The processor is configured to derive a system oxygen storage setpoint for the catalytic converter system based on the catalytic converter model and the oxygen storage estimate.