Abstract:
The present disclosure generally relates to semiconductor structures and, more particularly, to self-aligned nanotube structures and methods of manufacture. The structure includes at least one nanotube structure supported by a plurality of spacers and an insulator material between the spacers and contacting the at least one nanotube structure.
Abstract:
Chip structures and fabrication methods for forming such chip structures. A first device structure has a structural feature comprised of a first dielectric material and a second device structure has a structural feature comprised of a second dielectric material. A semiconductor layer has a first section adjacent to the structural feature of the first device structure and a second section adjacent to the structural feature of the second device structure. The first section of the semiconductor layer has a popped relationship relative to the structural feature comprised of the first dielectric material. The second section of the semiconductor layer includes a portion that has a pinned relationship relative to a portion of the structural feature comprised of the second dielectric material.
Abstract:
A method of manufacturing a semiconductor structure, by depositing a dielectric layer is a dummy gate, or an existing gate structure, prior to the formation of gate spacers. Following the formation of spacers, and in some embodiments replacing a dummy gate with a final gate structure, oxygen is introduced to a gate dielectric through a diffusion process, using the deposited dielectric layer as a diffusion pathway.
Abstract:
Chip structures and fabrication methods for forming such chip structures. A first device structure has a structural feature comprised of a first dielectric material and a second device structure has a structural feature comprised of a second dielectric material. A semiconductor layer has a first section adjacent to the structural feature of the first device structure and a second section adjacent to the structural feature of the second device structure. The first section of the semiconductor layer has a popped relationship relative to the structural feature comprised of the first dielectric material. The second section of the semiconductor layer includes a portion that has a pinned relationship relative to a portion of the structural feature comprised of the second dielectric material.
Abstract:
Device structures for a field-effect transistor and methods of forming such device structures using a device layer of a silicon-on-insulator substrate. A channel and an isolation region are formed in the device layer. The channel is located beneath a gate structure is formed on the device layer and is comprised of a semiconductor material under strain. A portion of the device layer is located between the first isolation region and the channel. The portion of the device layer is under a strain that is less than the strain in the semiconductor material of the channel.
Abstract:
The disclosure relates to semiconductor structures and, more particularly, to one or more devices with an engineered layer for modulating voltage threshold (Vt) and methods of manufacture. The method includes finding correlation of thickness of a buffer layer to out-diffusion of dopant into extension regions during annealing of a doped layer formed on the buffer layer. The method further includes determining a predetermined thickness of the buffer layer to adjust device performance characteristics based on the correlation of thickness of the buffer layer to the out-diffusion. The method further includes forming the buffer layer adjacent to gate structures to the predetermined thickness.
Abstract:
Device structures for a field-effect transistor and methods of forming such device structures using a device layer of a silicon-on-insulator substrate. A channel and an isolation region are formed in the device layer. The channel is located beneath a gate structure is formed on the device layer and is comprised of a semiconductor material under strain. A portion of the device layer is located between the first isolation region and the channel. The portion of the device layer is under a strain that is less than the strain in the semiconductor material of the channel.
Abstract:
The disclosure relates to semiconductor structures and, more particularly, to one or more devices with an engineered layer for modulating voltage threshold (Vt) and methods of manufacture. The method includes finding correlation of thickness of a buffer layer to out-diffusion of dopant into extension regions during annealing of a doped layer formed on the buffer layer. The method further includes determining a predetermined thickness of the buffer layer to adjust device performance characteristics based on the correlation of thickness of the buffer layer to the out-diffusion. The method further includes forming the buffer layer adjacent to gate structures to the predetermined thickness.
Abstract:
Standard High-K metal gate (HKMG) CMOS technologies fabricated using the replacement metal gate (RMG), also known as gate-last, integration flow, are susceptible to oxygen ingress into the high-K gate dielectric layer and oxygen diffusion into the gate dielectric and semiconductor channel region. The oxygen at the gate dielectric and semiconductor channel interface induces unwanted oxide regrowth that results in an effective oxide thickness increase, and transistor threshold voltage shifts, both of which are highly variable and degrade semiconductor chip performance. By introducing silicon nitride deposited at low temperature, after the metal gate formation, the oxygen ingress and gate dielectric regrowth can be avoided, and a high semiconductor chip performance is maintained.