Abstract:
A FinFET has shaped epitaxial structures for the source and drain that are electrically isolated from the substrate. Shaped epitaxial structures in the active region are separated from the substrate in the source and drain regions while those in the channel region remain. The gaps created by the separation in the source and drain are filled with electrically insulating material. Prior to filling the gaps, defects created by the separation may be reduced.
Abstract:
A method includes providing a gate structure having a dummy gate, a first spacer along a side of the gate. The dummy gate and the spacer are removed to expose a gate dielectric. A second spacer is deposited on at least one side of a gate structure cavity and a top of the gate dielectric. A bottom portion of the second spacer is removed to expose the gate dielectric and the gate structure is wet cleaned.
Abstract:
Semiconductor structures and fabrication methods are provided which includes, for instance, providing a gate structure over a semiconductor substrate, the gate structure including multiple conformal gate layers and a gate material disposed within the multiple conformal gate layers; recessing a portion of the multiple conformal gate layers below an upper surface of the gate structure, where upper surfaces of recessed, multiple conformal gate layers are coplanar; and removing a portion of the gate material to facilitate an upper surface of a remaining portion of the gate material to be coplanar with an upper surface of the recessed, multiple conformal gate layers.
Abstract:
For the formation of a stressor on one or more of a source and drain defined on a fin of FINFET semiconductor structure, a method can be employed including performing selective epitaxial growth (SEG) on one or more of the source and drain defined on the fin, separating the fin from a bulk silicon substrate at one or more of the source and drain, and further performing SEG on one or more of the source and drain to form a wrap around epitaxial growth stressor that stresses a channel connecting the source and drain. The formed stressor can be formed so that the epitaxial growth material defining a wrap around configuration connects to the bulk substrate. The formed stressor can increase mobility in a channel connecting the defined source and drain.
Abstract:
A semiconductor structure in fabrication includes a n-FinFET and p-FinFET. Stress inducing materials such as silicon and silicon germanium are epitaxially grown into naturally diamond-shaped structures atop the silicon fins of the n-FinFET and p-FinFET areas. The diamond structures act as the source, drain and channel between the source and drain. The diamond structures of the channel are selectively separated from the fin while retaining the fin connections of the diamond-shaped growth of the source and the drain. Further fabrication to complete the structure may then proceed.