Abstract:
Semiconductor structures and fabrication methods are provided which includes, for instance, providing a gate structure over a semiconductor substrate, the gate structure including multiple conformal gate layers and a gate material disposed within the multiple conformal gate layers; recessing a portion of the multiple conformal gate layers below an upper surface of the gate structure, where upper surfaces of recessed, multiple conformal gate layers are coplanar; and removing a portion of the gate material to facilitate an upper surface of a remaining portion of the gate material to be coplanar with an upper surface of the recessed, multiple conformal gate layers.
Abstract:
Methods of MOL S/D contact patterning of RMG devices without gouging of the Rx area or replacement of the dielectric are provided. Embodiments include forming a SOG layer around a RMG structure, the RMG structure having a contact etch stop layer and a gate cap layer; forming a lithography stack over the SOG and gate cap layers; patterning first and second TS openings through the lithography stack down to the SOG layer; removing a portion of the SOG layer through the first and second TS openings, the removing selective to the contact etch stop layer; converting the SOG layer to a SiO2 layer; forming a metal layer over the SiO2 layer; and planarizing the metal and SiO2 layers down to the gate cap layer.
Abstract:
Methods are provided for facilitating fabricating a semiconductor device by selectively etching a gate structure sidewall(s) to facilitate subsequent sidewall spacer isolation. The method includes, for instance: providing a gate structure with a protective layer(s) over the gate structure, the gate structure including one or more sidewalls; selectively removing a portion of the gate structure along at least one sidewall to partially undercut the protective layer(s); and forming a sidewall spacer(s) over the sidewall(s) of the gate structure, with a portion of the sidewall spacer at least partially filling the partial undercut of the protective layer(s), and residing below the protective layer(s). In certain embodiments, the selectively removing includes implanting the sidewall(s) with a dopant to produce a doped region(s) of the gate structure, and subsequently, at least partially removing the doped region(s) of the gate structure selective to an undoped region of the gate structure.