Abstract:
Integrated circuits and methods of forming integrated circuits are provided. An integrated circuit includes a gate electrode structure overlying a base substrate. The gate electrode structure includes a gate electrode, with a cap disposed over the gate electrode and sidewall spacers disposed adjacent to sidewalls of the gate electrode structure. A source and drain region are formed in the base substrate aligned with the gate electrode structure. A first dielectric layer is disposed adjacent to the sidewall spacers. The sidewall spacers and the cap have recessed surfaces below a top surface of the first dielectric layer, and a protecting layer is disposed over the recessed surfaces. A second dielectric layer is disposed over the first dielectric layer and the protecting layer. Electrical interconnects are disposed through the first dielectric layer and the second dielectric layer, and the electrical interconnects are in electrical communication with the respective source and drain regions.
Abstract:
One method includes forming first sidewall spacers adjacent opposite sides of a sacrificial gate structure and a gate cap layer, removing the gate cap layer and a portion of the first sidewall spacers to define reduced-height first sidewall spacers, forming second sidewall spacers, removing the sacrificial gate structure to thereby define a gate cavity, whereby a portion of the gate cavity is laterally defined by the second sidewall spacers, and forming a replacement gate structure in the gate cavity, wherein at least a first portion of the replacement gate structure is positioned between the second sidewall spacers. A device includes a gate structure positioned above the substrate between first and second spaced-apart portions of a layer of insulating material and a plurality of first sidewall spacers, each of which are positioned between the gate structure and on one of the first and second portions of the layer of insulating material.
Abstract:
A semiconductor device includes gates and a low-k spacer. The low-k spacer includes low-k spacer portions formed upon the gate sidewalls and a low-k spacer portion formed upon a top surface of an underlying substrate adjacent to the gates. When a structure has previously undergone a gate processing fabrication stage, the gates and at least a portion of the top surface of the substrate may be exposed thereby allowing the formation of the low-k spacer. This exposure may include removing any original gate spacers, removing an original liner formed upon the original spacers, and removing any original fill material formed upon the liner.
Abstract:
A semiconductor device includes gates and a low-k spacer. The low-k spacer includes low-k spacer portions formed upon the gate sidewalls and a low-k spacer portion formed upon a top surface of an underlying substrate adjacent to the gates. When a structure has previously undergone a gate processing fabrication stage, the gates and at least a portion of the top surface of the substrate may be exposed thereby allowing the formation of the low-k spacer. This exposure may include removing any original gate spacers, removing an original liner formed upon the original spacers, and removing any original fill material formed upon the liner.
Abstract:
Integrated circuits and methods of forming integrated circuits are provided. An integrated circuit includes a gate electrode structure overlying a base substrate. The gate electrode structure includes a gate electrode, with a cap disposed over the gate electrode and sidewall spacers disposed adjacent to sidewalls of the gate electrode structure. A source and drain region are formed in the base substrate aligned with the gate electrode structure. A first dielectric layer is disposed adjacent to the sidewall spacers. The sidewall spacers and the cap have recessed surfaces below a top surface of the first dielectric layer, and a protecting layer is disposed over the recessed surfaces. A second dielectric layer is disposed over the first dielectric layer and the protecting layer. Electrical interconnects are disposed through the first dielectric layer and the second dielectric layer, and the electrical interconnects are in electrical communication with the respective source and drain regions.
Abstract:
One method includes forming first sidewall spacers adjacent opposite sides of a sacrificial gate structure and a gate cap layer, removing the gate cap layer and a portion of the first sidewall spacers to define reduced-height first sidewall spacers, forming second sidewall spacers, removing the sacrificial gate structure to thereby define a gate cavity, whereby a portion of the gate cavity is laterally defined by the second sidewall spacers, and forming a replacement gate structure in the gate cavity, wherein at least a first portion of the replacement gate structure is positioned between the second sidewall spacers. A device includes a gate structure positioned above the substrate between first and second spaced-apart portions of a layer of insulating material and a plurality of first sidewall spacers, each of which are positioned between the gate structure and on one of the first and second portions of the layer of insulating material.
Abstract:
A semiconductor device includes gates and a low-k spacer. The low-k spacer includes low-k spacer portions formed upon the gate sidewalls and a low-k spacer portion formed upon a top surface of an underlying substrate adjacent to the gates. When a structure has previously undergone a gate processing fabrication stage, the gates and at least a portion of the top surface of the substrate may be exposed thereby allowing the formation of the low-k spacer. This exposure may include removing any original gate spacers, removing an original liner formed upon the original spacers, and removing any original fill material formed upon the liner.