Abstract:
Methods for fabricating integrated circuits having low resistance metal gate structures are provided. One method includes forming a metal gate stack in a FET trench formed in a FET region. The metal gate stack is etched to form a recessed metal gate stack and a recess. The recess is defined by sidewalls in the FET region and is disposed above the recessed metal gate stack. A liner is formed overlying the sidewalls and the recessed metal gate stack and defines an inner cavity in the recess. A copper layer is formed overlying the liner and at least partially fills the inner cavity. The copper layer is etched to expose an upper portion of the liner while leaving a copper portion disposed in a bottom portion of the inner cavity. Copper is electrolessly deposited on the copper portion to fill a remaining portion of the inner cavity.
Abstract:
The present disclosure is generally directed to multi-layer barrier layer stacks for interconnect structures that may be used to reduce mechanical stress levels between the interconnect structure and a dielectric material layer in which the interconnect structure is formed. One illustrative method disclosed herein includes forming a recess in a dielectric layer of a substrate and forming an adhesion barrier layer including an alloy of tantalum and at least one transition metal other than tantalum to line the recess, wherein forming the adhesion barrier layer includes creating a first stress level across a first interface between the adhesion barrier layer and the dielectric layer. The method also includes forming a stress-reducing barrier layer including tantalum over the adhesion barrier layer, wherein the stress-reducing barrier layer reduces the first stress level to a second stress level less than the first stress level, and filling the recess with a fill layer.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate and forming fins over the semiconductor substrate. Each fin is formed with sidewalls. The method further includes conformally depositing a metal film stack on the sidewalls of each fin. In the method, the metal film stack is annealed to form a metal silicide film over the sidewalls of each fin.
Abstract:
Methods for fabricating integrated circuits having low resistance device contacts are provided. One method includes depositing an ILD layer of insulating material overlying a device region that includes a metal silicide region. The ILD layer is etched to form a sidewall that defines a contact opening formed through the ILD layer exposing the metal silicide region. A liner is formed overlying the sidewall and the metal silicide region and defines an inner cavity in the contact opening. A copper layer is formed overlying the liner and at least partially filling the inner cavity. The copper layer is etched to expose an upper portion of the liner while leaving a copper portion disposed in a bottom portion of the inner cavity. Copper is electrolessly deposited on the copper portion to fill a remaining portion of the inner cavity.
Abstract:
One method for forming replacement gate structures for NMOS and PMOS transistors includes performing an etching process to remove a sacrificial gate structure for the NMOS and PMOS transistors to thereby define NMOS and PMOS gate cavities, depositing a gate insulation layer in the gate cavities, depositing a first metal layer on the gate insulation layer in the gate cavities, performing at least one process operation to form (1) an NMOS metal silicide material above the first metal layer within the NMOS gate cavity, the NMOS metal silicide material having a first amount of atomic silicon, and (2) a PMOS metal silicide material above the first metal layer within the PMOS gate cavity, the PMOS metal silicide material having a second amount of atomic silicon, and wherein the first and second amounts of atomic silicon are different, and forming gate cap layers within the NMOS and PMOS gate cavities.
Abstract:
A semiconductor device includes a recess defined in a dielectric layer and an interconnect structure defined in the recess. The interconnect structure includes a first barrier layer lining the recess, the first barrier layer including an alloy of tantalum and a first transition metal other than tantalum, wherein a first interface between the first barrier layer and the dielectric layer has a first stress level. A second barrier layer is positioned on the first barrier layer, the second barrier layer including at least one of tantalum and tantalum nitride, wherein a second interface between the second barrier layer and the first barrier layer has a second stress level that is less than the first stress level. The interconnect structure further includes a fill material substantially filling the recess.
Abstract:
Methods for fabricating integrated circuits having low resistance metal gate structures are provided. One method includes forming a metal gate stack in a FET trench formed in a FET region. The metal gate stack is etched to form a recessed metal gate stack and a recess. The recess is defined by sidewalls in the FET region and is disposed above the recessed metal gate stack. A liner is formed overlying the sidewalls and the recessed metal gate stack and defines an inner cavity in the recess. A copper layer is formed overlying the liner and at least partially fills the inner cavity. The copper layer is etched to expose an upper portion of the liner while leaving a copper portion disposed in a bottom portion of the inner cavity. Copper is electrolessly deposited on the copper portion to fill a remaining portion of the inner cavity.
Abstract:
A method includes forming an adhesion barrier layer over a dielectric layer formed on a substrate. A first stress level is present across a first interface between the adhesion barrier layer and the dielectric layer. A stress-reducing barrier layer is formed over the adhesion barrier layer. The stress-reducing barrier layer reduces the first stress level to provide a second stress level, less than the first stress level, across a second interface between the adhesion barrier layer, the stress-reducing barrier layer, and the dielectric layer. A metal layer is formed over the stress-reducing barrier layer. The metal layer, adhesion barrier layer, and stress-reducing barrier layer define an interconnect metal stack. Recesses are defined in the interconnect metal stack to expose the dielectric layer. The recesses are filled with a dielectric material, wherein a portion of the interconnect metal stack disposed between adjacent recessed filled with dielectric material defines an interconnect structure.
Abstract:
One method for forming replacement gate structures for NMOS and PMOS transistors includes performing an etching process to remove a sacrificial gate structure for the NMOS and PMOS transistors to thereby define NMOS and PMOS gate cavities, depositing a gate insulation layer in the gate cavities, depositing a first metal layer on the gate insulation layer in the gate cavities, performing at least one process operation to form (1) an NMOS metal silicide material above the first metal layer within the NMOS gate cavity, the NMOS metal silicide material having a first amount of atomic silicon, and (2) a PMOS metal silicide material above the first metal layer within the PMOS gate cavity, the PMOS metal silicide material having a second amount of atomic silicon, and wherein the first and second amounts of atomic silicon are different, and forming gate cap layers within the NMOS and PMOS gate cavities.
Abstract:
An integrated circuit product includes an NMOS transistor having a gate structure that includes an NMOS gate insulation layer, a first NMOS metal layer positioned on the NMOS gate insulation layer, an NMOS metal silicide material positioned above the first NMOS metal layer, and a layer of a second metal material positioned above and in contact with the NMOS gate insulation layer, the first NMOS metal layer, and the NMOS metal silicide layer. The PMOS transistor has a gate structure that includes a PMOS gate insulation layer, a first PMOS metal layer positioned on the PMOS gate insulation layer, a PMOS metal silicide material positioned above the first PMOS metal layer, and a layer of the second metal material positioned above and in contact with the PMOS gate insulation layer, the first PMOS metal layer, and the PMOS metal silicide layer.