摘要:
Disclosed herein is a Light Emitting Diode (LED) backlight unit without a Printed Circuit board (PCB). The LED backlight unit includes a chassis, insulating resin layer, and one or more light source modules. The insulating resin layer is formed on the chassis. The circuit patterns are formed on the insulating resin layer. The light source modules are mounted on the insulating resin layer and are electrically connected to the circuit patterns. The insulating resin layer has a thickness of 200 μm or less, and is formed by laminating solid film insulating resin on the chassis or by applying liquid insulating resin to the chassis using a molding method employing spin coating or blade coating. Furthermore, the circuit patterns are formed by filling the engraved circuit patterns of the insulating resin layer with metal material.
摘要:
Disclosed herein is a Light Emitting Diode (LED) backlight unit without a Printed Circuit board (PCB). The LED backlight unit includes a chassis, insulating resin layer, and one or more light source modules. The insulating resin layer is formed on the chassis. The circuit patterns are formed on the insulating resin layer. The light source modules are mounted on the insulating resin layer and are electrically connected to the circuit patterns. The insulating resin layer has a thickness of 200 μm or less, and is formed by laminating solid film insulating resin on the chassis or by applying liquid insulating resin to the chassis using a molding method employing spin coating or blade coating. Furthermore, the circuit patterns are formed by filling the engraved circuit patterns of the insulating resin layer with metal material.
摘要:
Disclosed herein is a Light Emitting Diode (LED) backlight unit without a Printed Circuit board (PCB). The LED backlight unit includes a chassis, insulating resin layer, and one or more light source modules. The insulating resin layer is formed on the chassis. The circuit patterns are formed on the insulating resin layer. The light source modules are mounted on the insulating resin layer and are electrically connected to the circuit patterns. The insulating resin layer has a thickness of 200 μm or less, and is formed by laminating solid film insulating resin on the chassis or by applying liquid insulating resin to the chassis using a molding method employing spin coating or blade coating. Furthermore, the circuit patterns are formed by filling the engraved circuit patterns of the insulating resin layer with metal material.
摘要:
Disclosed herein is an interdigitation-type diffractive light modulator. In the interdigitation-type diffractive light modulator of the present invention, each of a pair of ribbons has a plurality of diffractive branches which are arranged in a comb shape, and the diffractive branches of the ribbons interdigitate with each other. Furthermore, the respective ribbons moves upwards and downwards or, alternatively, one ribbon moves upwards and downwards, so that the diffractive branches of the ribbons which interdigitate with each other form a stepped structure, thus diffracting incident light.
摘要:
A storage device includes a nonvolatile memory device and a controller configured to read data from the nonvolatile memory device, to divide the read data into a plurality of segments, and to sequentially perform error correction decoding with respect to the plurality of segments. When the error correction decoding of each segment is completed, the controller adds error correction parity to each of the decoded segments and sends the decoded segments with added error correction parity to an external host device. When error correction decoding of a second segment is not completed after a threshold time has elapsed after sending a first segment of which error correction decoding is completed, the controller adds an incorrect error correction parity to dummy data and sends the dummy data with the added incorrect error correction parity to the external host device.
摘要:
The present invention provides an MLCC and an MLCC array. The MLCC has desirably low ESL properties by forming the first and second internal electrodes to be spaced apart from each other on the same dielectric layer while overlapping with other first and second internal electrodes on the neighboring dielectric layers, and connecting the first and second internal electrodes to the external terminals provided on the top surface or the bottom surface of the capacitor body through conductive via holes formed in the capacitor body in a stacking direction of the capacitor body.
摘要:
Disclosed herein is a multilayered chip capacitor array, including a capacitor body having a plurality of dielectric layers, a plurality of pairs of first and second inner electrodes which are formed on the plurality of dielectric layers such that one electrode of one pair of inner electrodes faces the other electrode of the one pair of inner electrodes with one of the plurality of dielectric layers interposed therebetween, at least one first outer terminal and a plurality of second outer terminals formed on at least one surface of a top surface and a bottom surface of the capacitor body, and at least one first conductive via and a plurality of second conductive vias formed in a stacking direction of the capacitor body and connected to the first outer terminal and the second outer terminal, respectively.
摘要:
Disclosed is a fishbone diffraction-type light modulator. In the fishbone diffraction-type light modulator, a lower micromirror is provided on a silicone substrate, and an upper micromirror is spaced apart from the silicone substrate and has a plurality of openings through both sides thereof. The upper micromirror and the lower micromirror deposited on the silicone substrate form pixels.