Abstract:
A thermosiphon system includes a condenser, an evaporator, and a condensate line fluidically coupling the condenser to the evaporator. The condensate line can be a tube with parallel passages can be used to carry the liquid condensate from the condenser to the evaporator and to carry the vapor from the evaporator to the condenser. The evaporator can be integrated into the tube. The condenser can be constructed with an angled core. The entire assembly can be constructed using a single material, e.g., aluminum, and can be brazed together in a single brazing operation.
Abstract:
A thermosiphon system includes a condenser and an evaporator fluidly coupled to the condenser by a condensate line. The evaporator includes a housing having an opening to the condensate line, a wick located in the housing, and a flow restrictor located in the housing configured to restrict flow of a working fluid from the condensate line onto a portion of the wick
Abstract:
A method of assembling a thermosiphon system includes placing a base of an evaporator and a tube of a condensate line in a brazing fixture such that the base covers an aperture in a bottom of the tube with a bottom surface of the base abutting a precision machined surface of the brazing fixture, and simultaneously brazing the base and the tube while held by the brazing fixture to form a unitary body in a single brazing process, the unitary body including the evaporator and the condensate line.
Abstract:
A thermosiphon system includes a condenser, an evaporator including a housing and a wick located in the housing, and a condensate line fluidically coupling the condenser to the evaporator. The condensate line includes an outer tube and an inner tube nested within the outer tube. A first passage defined by the inner tube is positioned to carry a liquid phase of a working fluid from the condenser to the evaporator, and a second passage defined by a volume between the inner tube and the outer tube is positioned to carry a vapor phase of the working fluid from the evaporator to the condenser.
Abstract:
A method of assembling a thermosiphon system includes placing a base of an evaporator and a tube of a condensate line in a brazing fixture such that the base covers an aperture in a bottom of the tube with a bottom surface of the base abutting a precision machined surface of the brazing fixture, and simultaneously brazing the base and the tube while held by the brazing fixture to form a unitary body in a single brazing process, the unitary body including the evaporator and the condensate line.
Abstract:
A thermosiphon system includes a condenser and an evaporator fluidically coupled to the condenser by a condensate line. The evaporator includes a housing having an opening to the condensate line, a wick located in the housing, and a flow restrictor located in the housing configured to restrict flow of a working fluid from the condensate line onto a portion of the wick.
Abstract:
Methods, systems, and apparatus for cooling control in a datacenter. In one aspect, a method includes, for each processing device in a cluster of processing devices configured to perform a distributed task, wherein each processing device is thermally controlled by a cooling system that controls cooling to each processing device on an individual basis, determining whether the processing device is operating within a performance target for the cluster of processing devices; for each processing device determined to not be operating within the performance target for the cluster, generating a respective control signal to adjust the cooling delivery to the processing device to cause the performance of the processing device to be within the performance target for the cluster of processing devices; and for each processing device determined to be operating within the performance target for the cluster, maintaining the cooling delivery to the processing device.
Abstract:
A thermosiphon system includes a condenser and an evaporator fluidically coupled to the condenser by a condensate line. The evaporator includes a housing having an opening to the condensate line, a wick located in the housing, and a flow restrictor located in the housing configured to restrict flow of a working fluid from the condensate line onto a portion of the wick
Abstract:
Techniques for cooling a data center include circulating a first cooling medium to cool a plurality of rack-mounted computers; circulating a second cooling medium to cool the plurality of rack-mounted computers; determining that a first portion of the plurality of rack-mounted computers is operating at a power usage above a threshold power usage; adjusting at least one of a flow rate of the first or second cooling mediums to cool a second portion of the plurality of rack-mounted computers; and rerouting a portion at least one the first or second cooling mediums to cool the first portion of the plurality of rack-mounted computers.
Abstract:
A method of assembling a thermosiphon system includes placing a base of an evaporator and a tube of a condensate line in a brazing fixture such that the base covers an aperture in a bottom of the tube with a bottom surface of the base abutting a precision machined surface of the brazing fixture, and simultaneously brazing the base and the tube while held by the brazing fixture to form a unitary body in a single brazing process, the unitary body including the evaporator and the condensate line.