摘要:
An image of a road area ahead of a vehicle is formed based on road data read from a navigation system, or based on an image shot by a camera means such as a video camera. A temperature profile ahead of the vehicle detected by a temperature detecting means such as an infrared camera is superposed on the image of the road area. As a result, if a low-temperature zone is detected on the road area, it is determined that there is snow or ice existing on the road area, or if a high-temperature zone is detected, it is determined that there is a person or animal existing on the road area, thereby informing a driver by an alarm means or a display means to avoid such an obstruction or hazard. Thus, it is possible to perceive snow, ice, a person and an animal existing on a road ahead of the vehicle without relying on a driver's visual judgment, and to give an alarm so that the driver may timely take an appropriate countermeasure to avoid the obstruction or hazardous situation.
摘要:
A course travel judging device judges based on outputs from a map information outputting device and a subject vehicle position outputting device whether a subject vehicle is traveling on a course set by a course setting device. If the subject vehicle is traveling on the set course, a vehicle speed is controlled by a travel control device, so that the subject vehicle can safely pass through a curve ahead thereof. If the subject vehicle has deviated from the set course, an alarm is given to an occupant by an alarm device, and the control of vehicle speed by the travel control device is stopped. If a departing possibility judging device judges that there is a possibility of departing of the subject vehicle from the set course, a deviatable course is set by a deviatable course determining device, and the vehicle speed is controlled by the travel control device, so that the subject vehicle can safely pass through a curve having a severest passing condition on either of the set course or the deviatable course. Therefore, even if a vehicle has deviated from a course determined through a navigation system, an appropriate control of vehicle speed can be carried out.
摘要:
A road surface condition-detecting system for a vehicle detects a road surface condition from road noise generated by a vehicle wheel. The road surface condition is determined based on parameter data of frequency components of the road noise, by a neural network. The road noise may be corrected by eliminating therefrom a disturbance, such as audio output and exhaust noise. A present state of the road surface condition may be determined based on at least two consecutive determinations made based on the road noise detected at regular time intervals. Exclusive neural networks may be used for respective road surface condition types. One of a plurality of neural networks provided for respective vehicle speed ranges may be selected according to an actual vehicle speed. Detected sound pressure levels of the road noise extracted by frequency analysis may be normalized within respective ranges defined by upper and lower limits set corresponding to predetermined frequency ranges before being supplied to the neural network.
摘要:
An azimuth change quantity .theta. of a road during traveling of a vehicle for a time .delta.t is calculated based on road data provided by a navigation system and a vehicle speed provided by a vehicle speed sensor (at step S3 in FIG. 2). On the other hand, an azimuth change quantity .THETA. of the vehicle is calculated by integrating a yaw rate .gamma. obtained from a yaw rate sensor over the time .delta.t (at step S5). A deviation D between the azimuth change quantity .theta. of the road and the azimuth change quantity .THETA. of the vehicle is calculated (at step S6). When the deviation D becomes equal to or larger than a reference value .beta., it is determined that there is a possibility that the vehicle will depart from the road (at step S9), and a predetermined steering torque is applied to a steering device, so that the deviation is converged into zero (at steps S10 and S11).
摘要:
When a subject vehicle is traveling on a main line which is a preferential road, the number of lanes of the main line and a lane on which the subject vehicle is traveling are detected (at steps S1 and S2). When there is a merging section with a subordinate line (at step S3), an information transmitted from another vehicle is received (at step S4). If another vehicle which will merge to the subject vehicle exists on the subordinate line (at step S5), an approach degree between the subject vehicle and the other vehicle at the merging section is determined based on the vehicle speed of the subject vehicle and the information of the other vehicle (at steps S6 and S7). If the approach degree is large, namely, there is a possibility that the subject vehicle may interfere with the other vehicle (at step S8), a vehicle traveling behind the subject vehicle is detected by a radar or the like (at step S9). If no vehicle exists behind the subject vehicle, and it is possible for the subject vehicle to change the lane (at step S10), the lane change is indicated to a driver (at step S11). If the lane change is impossible (at step S10), a warning is given to the driver (at step S12). Thus, it is possible for the subject vehicle to smoothly merge at the merging section of a road.
摘要:
An azimuth change quantity .theta. of a road during traveling of a vehicle for a time .delta.t is calculated based on road data provided by a navigation system and a vehicle speed provided by a vehicle speed sensor (at step S3 in FIG. 2). On the other hand, an azimuth change quantity .THETA. of the vehicle is calculated by integrating a yaw rate .gamma. obtained from a yaw rate sensor over the time .delta.t (at step S5). A deviation D between the azimuth change quantity .theta. of the road and the azimuth change quantity .THETA. of the vehicle is calculated (at step S6). When the deviation D becomes equal to or larger than a reference value .beta., it is determined that there is a possibility that the vehicle will depart from the road (at step S9), and a predetermined steering torque is applied to a steering device, so that the deviation is converged into zero (at steps S10 and S11).
摘要:
An azimuth change quantity .theta. of a road during traveling of a vehicle for a time .delta.t is calculated based on road data provided by a navigation system and a vehicle speed provided by a vehicle speed sensor (at step S3 in FIG. 2). On the other hand, an azimuth change quantity .THETA. of the vehicle is calculated by integrating a yaw rate .gamma. obtained from a yaw rate sensor over the time .delta.t (at step S5). A deviation D between the azimuth change quantity .theta. of the road and the azimuth change quantity .THETA. of the vehicle is calculated (at step S6). When the deviation D becomes equal to or larger than a reference value .beta., it is determined that there is a possibility that the vehicle will depart from the road (at step S9), and a predetermined steering torque is applied to a steering device, so that the deviation is converged into zero (at steps S10 and S11).
摘要:
An azimuth change quantity .theta. of a road during traveling of a vehicle for a time .delta.t is calculated based on road data provided by a navigation system and a vehicle speed provided by a vehicle speed sensor (at step S3 in FIG. 2). On the other hand, an azimuth change quantity .THETA. of the vehicle is calculated by integrating a yaw rate .gamma. obtained from a yaw rate sensor over the time .delta.t (at step S5). A deviation D between the azimuth change quantity .theta. of the road and the azimuth change quantity .THETA. of the vehicle is calculated (at step S6). When the deviation D becomes equal to or larger than a reference value .beta., it is determined that there is a possibility that the vehicle will depart from the road (at step S9) , and a predetermined steering torque is applied to a steering device, so that the deviation is converged into zero (at steps S10 and S11).
摘要:
A driving control system for a vehicle includes a map information output device for outputting a map, a vehicle position detecting device for detecting a vehicle position of a subject vehicle on the map, a vehicle speed detecting device for detecting a vehicle speed, a passable area determining device for determining a passable area on the map on the basis of the detected vehicle speed, and a passability/impassability judging device for deciding that the vehicle may pass through a portion of road when a road which is in front of the vehicle position in a traveling direction is included in the passable area on the map. The road which is in front of the vehicle position in the traveling direction is compared with the determined passable area, and when the road is included in the passable area, it is decided that the vehicle may pass through the portion of road. Thus, it is possible to properly judge whether or not the vehicle may pass through the portion of road by a simple calculation not including a complex and poor-accuracy calculation of the radius of curvature of a road.
摘要:
In a first type, there is provided, inside an inner tube of a twin-tube type of damper, a pressurizing chamber to be defined by a free piston which is slidably fit onto an outer surface of a rod. A fluid pressure from an outside pressure source is supplied to the pressurizing chamber to push down a damper piston via the free piston to thereby forcibly contract the damper. In a second type, there is provided inside an inner tube a cylinder which is slidably fit onto an outer surface of a rod, and a piston mounted on the rod is inserted into the cylinder. A fluid pressure from the pressure source is supplied to the pressurizing chamber inside the cylinder to push down the rod via the piston to thereby forcibly contract the damper. In a third type, a rod is slidably inserted into a partition wall in an intermediate portion of a damper main body of a mono-tube type of damper. A free piston which is prevented by a stopper member from dropping out of position downwards is slidably mounted onto an outer surface of a rod portion below the partition wall. A fluid pressure from a pressure source is supplied to a pressurizing chamber to be defined between the partition wall and the free piston. The rod is pushed down via the free piston and the stopper member to thereby forcibly contract the damper.