Abstract:
A focused ion beam system includes a gas ion source and an emitter structure. The emitter structure includes a pair of conductive pins fixed to a base member, a filament connected between the pair of conductive pins, and an emitter which has a tip end with one atom or three atoms and which is connected to the filament. A supporting member is fixed to the base material, and the emitter is connected to the supporting member.
Abstract:
A focused ion beam apparatus includes an ion source that emits an ion beam, an extraction electrode that extracts ions from a tip end of an emitter of the ion source, and a first lens electrode that configures a condenser lens by a potential difference with the extraction electrode, the condenser lens focusing the ions extracted by the extraction electrode, in which a strong lens action is generated between the extraction electrode and the first lens electrode so as to focus all ions extracted from the ion source to pass through a hole of the condenser lens including the first lens electrode.
Abstract:
A focused ion beam apparatus is configured to perform at least one of a process of controlling an operation of a cooling unit so that a temperature of a wall surface contacting a source gas in an ion source chamber is maintained at a temperature higher than a temperature at which the source gas freezes and a process of controlling an operation of a heater so that an emitter is temporarily heated when the source gas is exchanged.
Abstract:
An ion beam tube of a composite beam device is provided with an ion source and an ion optics. The ion optics is provided with a diaphragm member in which at least one through-hole that is switchable in order to pass part of an ion beam generated from the ion source therethrough is formed. The ion optics is provided with a blocking member that blocks part of the ion beam passing through the through-hole of the diaphragm member, and a blocking drive mechanism that drives the blocking member. The blocking drive mechanism performs switching between the presence and absence of blocking of the ion beam passing through the through-hole of the diaphragm member by the blocking member in a state where the ion optics maintains a predetermined optical condition.
Abstract:
There is provided an emitter structure, a gas ion source including the emitter structure, and a focused ion beam system including the gas ion source. The emitter structure includes a pair of conductive pins which are fixed to a base member, a filament which is connected between the pair of conductive pins, and an emitter which is connected to the filament and has a sharp tip. A supporting member is fixed to the base material, and the emitter is connected to the supporting member.
Abstract:
Provided is a focused ion beam processing apparatus including: an ion source; a sample stage a condenser lens; an aperture having a slit in a straight line shape; a projection lens and the sample stage, wherein, in a transfer mode, by Köhler illumination, with an applied voltage of the condenser lens when a focused ion beam is focused on a main surface of the projection lens scaled to be 100, the applied voltage is set to be less than 100 and greater than or equal to 80; a position of the aperture is set such that the focused ion beam is masked by the aperture with the one side of the aperture at a distance greater than 0 μm and equal to or less than 500 μm from a center of the focused ion beam; and the shape of the slit is transferred onto the sample.
Abstract:
Disclosed is a method of manufacturing an emitter in which the tip of the emitter can be formed into a desired shape even when various materials are used for the emitter. The method includes performing an electrolytic polishing process of polishing a front end of a conductive emitter material so that a diameter of the front end is gradually reduced toward a tip; performing a first etching process by irradiating a processing portion of the emitter material processed by the electrolytic polishing process with a charged particle beam; performing a sputtering process by irradiating the pointed portion formed by the first etching process with a focused ion beam; and performing a secondary etching process of further sharpening the tip by an electric field induced gas etching processing while observing a crystal structure of the tip of the pointed portion processed by the sputtering process using a field ion microscope.
Abstract:
Disclosed herein is a focused ion beam apparatus equipped with a gas field ion source that can produce a focused ion beam for a long period of time by stably and continuously emitting ions from the gas field ion source having high luminance, along an optical axis of an ion-optical system for a long period of time. In the focused ion beam apparatus equipped with a gas field ion source having an emitter for emitting ions, the emitter has a shape in which sharpened iridium is fixed to dissimilar wire.
Abstract:
An ion beam apparatus including: an ion source configured to emit an ion beam; a condenser lens electrode configured to condense the ion beam; a condenser lens power source configured to apply a voltage to the condenser lens electrode; a storage portion configured to store, a first voltage value, a second voltage value, a third voltage value, and a fourth voltage value; and a control portion configured to retrieve the third voltage value from the storage portion and set the retrieved third voltage value to the condenser lens power source when an observation mode is switched to a wide-range observation mode, and retrieve the fourth voltage value from the storage portion and set the retrieved fourth voltage value to the condenser lens power source when a processing mode is switched to the wide-range observation mode.