Abstract:
A printing medium supplying unit usable with an image forming apparatus which includes a casing and a feeding unit to feed a printing medium, and the image forming apparatus having the same. The printing medium supplying unit includes a feeding cassette to store and to supply the printing medium; and a guide unit rotatably coupled to the feeding cassette to guide the printing medium to the feeding unit.
Abstract:
According to example embodiments, a solid state drive system includes at least one semiconductor memory, a control circuit including first connection terminals, and second connection terminals. The first connection terminals may be configured to supply one or more operational voltages to the at least one semiconductor memory. The second connection terminals may be configured to supply one or more test voltages to the at least one semiconductor memory.
Abstract:
A method of forming a buried gate electrode prevents voids from being formed in a silicide layer of the gate electrode. The method begins by forming a trench in a semiconductor substrate, forming a conformal gate oxide layer on the semiconductor in which the trench has been formed, forming a first gate electrode layer on the gate oxide layer, forming a silicon layer on the first gate electrode layer to fill the trench. Then, a portion of the first gate electrode layer is removed to form a recess which exposed a portion of a lateral surface of the silicon layer. A metal layer is then formed on the semiconductor substrate including on the silicon layer. Next, the semiconductor substrate is annealed while the lateral surface of the silicon layer is exposed to form a metal silicide layer on the silicon layer.
Abstract:
Provided is a method of manufacturing a vertical light emitting device. The method of manufacturing the vertical light emitting device may include forming an emissive layer including a n-type semiconductor layer, an active layer, and a p-type semiconductor layer on a substrate, forming a first trench dividing the emissive layer into light emitting device units in which the emissive layer remains on the lower part of the first trench to a desired, or alternatively, a predetermined thickness, forming a passivation layer on the emissive layer, forming a p-type electrode on the p-type semiconductor layer of the emissive layer, forming a metal supporting layer on the passivation layer and the p-type electrode, removing the substrate, removing a remaining portion of the emissive layer when the surface of the emissive layer is exposed by removing the substrate, forming a n-type electrode on the n-type semiconductor layer of the emissive layer, and cutting the metal supporting layer to divide the emissive layer into the light emitting device units.
Abstract:
Provided are a semiconductor light emitting device having a nano pattern and a method of manufacturing the semiconductor light emitting device. The semiconductor light emitting device includes: a semiconductor layer comprising a plurality of nano patterns, wherein the plurality of nano patterns are formed inside the semiconductor layer; and an active layer formed on the semiconductor layer. The optical output efficiency is increased and inner defects of the semiconductor light emitting device are reduced.
Abstract:
A driving apparatus with a power disconnecting part for disconnecting power transmitted to an image fixing unit while an image formed on an image transfer belt is cleaned when a paper jam occurs, and an image forming apparatus and method for performing the same. The image forming apparatus comprises a driving motor, a belt unit driving part having a belt driving gear connected to the driving motor to drive an image belt, an image fixing unit driving part having an image fixing gear for driving an image fixing roller for fixing a toner image onto a recording medium, a power disconnecting part for transmitting the power of the driving motor of the belt unit driving part to the image fixing unit driving part or for disconnecting the power transmission of the driving motor from the image fixing unit driving part, and a power disconnection actuating part for actuating the power disconnecting part.
Abstract:
A low resistance electrode and a compound semiconductor light emitting device including the same are provided. The low resistance electrode deposited on a p-type semiconductor layer of a compound semiconductor light emitting device including an n-type semiconductor layer, an active layer, and the p-type semiconductor layer, including: a reflective electrode which is disposed on the p-type semiconductor layer and reflects light being emitted from the active layer; and an agglomeration preventing electrode which is disposed on the reflective electrode layer in order to prevent an agglomeration of the reflective electrode layer during an annealing process.
Abstract:
A medium supply unit of an image forming apparatus, the medium supply unit may include: a main body housing; a tray connected to the main body housing and loading a printing-target medium therein; an activating shaft connected to the main body housing and being rotated in a predetermined direction by an activating force of an activating source; an intermediate member supported by one end of the activating shaft to deliver a rotating force of the activating shaft; a first elastic member having one end connected to the intermediate member and the other end supported by the activating shaft; and elastically biasing the intermediate member in a direction facing the printing-target medium according to a rotation of the activating shaft; and a roller unit having a roller unit housing that is attachable to the intermediate member and at least one roller that is supported by the roller unit housing and picks up and supplies printing-target media loaded in the tray; and configured to deliver to the roller(s) an elastic force of the first elastic member and a rotating force of the activating shaft when the activating shaft is rotated.
Abstract:
Provided are a semiconductor light emitting device having a nano pattern and a method of manufacturing the semiconductor light emitting device. The semiconductor light emitting device includes: a semiconductor layer comprising a plurality of nano patterns, wherein the plurality of nano patterns are formed inside the semiconductor layer; and an active layer formed on the semiconductor layer. The optical output efficiency is increased and inner defects of the semiconductor light emitting device are reduced.
Abstract:
A method of forming a buried gate electrode prevents voids from being formed in a silicide layer of the gate electrode. The method begins by forming a trench in a semiconductor substrate, forming a conformal gate oxide layer on the semiconductor in which the trench has been formed, forming a first gate electrode layer on the gate oxide layer, forming a silicon layer on the first gate electrode layer to fill the trench. Then, a portion of the first gate electrode layer is removed to form a recess which exposed a portion of a lateral surface of the silicon layer. A metal layer is then formed on the semiconductor substrate including on the silicon layer. Next, the semiconductor substrate is annealed while the lateral surface of the silicon layer is exposed to form a metal silicide layer on the silicon layer.