Abstract:
A surgical system uses a single entry port in a wide variety of surgeries. To insert multiple surgical instruments into a patient through a single entry port requires that the shaft of at least one of the surgical instruments be bent between the base of the surgical instrument and the point where the shaft contacts a channel in an entry guide. Each surgical instrument is positioned by an instrument manipulator positioning system so that when the shaft is inserted in a channel of the entry guide, any bending of the shaft does not damage the surgical instrument and does not inhibit proper operation of the surgical instrument.
Abstract:
A patient-side support system includes a base, a platform movably coupled to the base, manipulator assemblies coupled to the platform, instruments, each of the instruments being coupled to a different one of the manipulator assemblies, each of the instruments including a body and a shaft extending from the body, and a guide tube common to the instruments. A first part of the shaft of each individual one of the instruments extends distally from the guide tube to the body. a second part of the shaft of each individual one of the instruments extends through at least a portion of the guide tube. The first part of the shaft of a first instrument of the instruments is articulatable between the body of the first instrument and the guide tube. The guide tube and the instruments are collectively rotatable about a longitudinal axis of the guide tube.
Abstract:
Techniques for limiting motion of a first structure include a manipulator supported by the first structure, a second structure supporting the first structure, and a processor. The processor is configured to, in response to entering a first mode, determine, relative to the first structure, a first position of a reference location on entry into the first mode, the reference location being associated with a link of the manipulator; and while in the first mode: detect a manual movement of the reference location to a second position relative to the first structure, wherein a difference between the first and second positions comprises a displacement having first and second components in respective different first and second directions; and, in response, command the second structure to move relative to the reference location in the first direction so as to reduce the first component while not changing the second component.
Abstract:
A teleoperated surgical system may comprise a plurality of teleoperated surgical instruments; a user input device; and a controller operably coupled to the user input device and to the plurality of surgical instruments. The user input device may be configured to transmit an activation command to cause activation of a function of a first one of the plurality of surgical instruments in response to input at the user input device, the function being supported by remote-control supply equipment. The controller may be configured to output a feedback command to cause feedback to a user, the feedback indicating the first one of the plurality of surgical instruments is configured for activation in response to the activation command.
Abstract:
A method comprises receiving first shape data from a first elongated optical fiber section in a first shape sensor. The first elongated optical fiber section extends between a reference fixture and a first anatomic fixture coupled to a patient anatomy. The method further comprises determining a pose of the first anatomic fixture from the first shape data and tracking a pose change for the first anatomic fixture.
Abstract:
To perform a tool exchange in a medical robotic system, tool is retracted back into an entry guide from a deployed position and pose so that an assistant in the operating room may replace it with a different tool. While the tool is being retracted back towards the entry guide by user action, its configuration is changed to an entry pose while avoiding collisions with other objects so that it may fit in the entry guide. After the tool exchange is completed, a new tool is inserted in the entry guide and extended out of the guide by user action to the original position of the old tool prior to its retraction into the entry guide while the tool's controller assists the user by reconfiguring the new tool so as to resemble the original deployed pose of the old tool prior to its retraction into the entry guide.
Abstract:
In a coupled control mode, an operator directly controls movement of an associated manipulator with an input device while indirectly controlling movement of one or more non-associated manipulators, in response to commanded motion of the directly controlled manipulator, to achieve a secondary objective. By automatically performing secondary tasks through coupled control modes, the system's usability is enhanced by reducing the operator's need to switch to another direct mode to manually achieve the desired secondary objective. Thus, coupled control modes allow the operator to better focus on performing tasks and to pay less attention to managing the system.
Abstract:
A user interface for a surgical system can include a display configured to output video images of a remote surgical site at which one or more electrosurgical instruments of the surgical system are deployed; and a graphical user interface configured to be output on the display with the video images. The graphical user interface may comprise a visual indication of a state of the one or more electrosurgical instruments that indicates a state of the one or more electrosurgical instruments being ready for activation to deliver energy or actively delivering energy.
Abstract:
A user interface for a surgical system can include a display configured to output video images of a remote surgical site at which one or more electrosurgical instruments of the surgical system are deployed; and a graphical user interface configured to be output on the display with the video images. The graphical user interface may comprise a visual indication of a state of the one or more electrosurgical instruments that indicates a state of the one or more electrosurgical instruments being ready for activation to deliver energy or actively delivering energy.
Abstract:
A user interface for a surgical system can include a display configured to output video images of a remote surgical site at which one or more electrosurgical instruments of the surgical system are deployed; and a graphical user interface configured to be output on the display with the video images. The graphical user interface may comprise a visual indication of a state of the one or more electrosurgical instruments that indicates a state of the one or more electrosurgical instruments being ready for activation to deliver energy or actively delivering energy.