摘要:
A method of forming a polysilicon layer includes providing a silicon precursor onto an object loaded in a process chamber to form a seed layer. The silicon precursor includes a nitrogen containing silicon precursor and a chlorine containing silicon precursor. The method further includes providing a silicon source on the seed layer.
摘要:
A device includes a first GSL, a plurality of first word lines, a first SSL, a plurality of first insulation layer patterns, and a first channel. The first GSL, the first word lines, and the first SSL are spaced apart from each other on a substrate in a first direction perpendicular to a top surface of a substrate. The first insulation layer patterns are between the first GSL, the first word lines and the first SSL. The first channel on the top surface of the substrate extends in the first direction through the first GSL, the first word lines, the first SSL, and the first insulation layer patterns, and has a thickness thinner at a portion thereof adjacent to the first SSL than at portions thereof adjacent to the first insulation layer patterns.
摘要:
According to example embodiments, a semiconductor device includes horizontal patterns stacked on a substrate. The horizontal patterns define an opening through the horizontal patterns. A first core pattern is in the opening. A second core pattern is in the opening on the first core pattern. A first active pattern is between the first core pattern and the horizontal patterns. A second active pattern containing a first element is between the second core pattern and the horizontal patterns. The second active pattern contains the first element at a higher concentration than a concentration of the first element in the second core pattern.
摘要:
According to example embodiments, a semiconductor device includes horizontal patterns stacked on a substrate. The horizontal patterns define an opening through the horizontal patterns. A first core pattern is in the opening. A second core pattern is in the opening on the first core pattern. A first active pattern is between the first core pattern and the horizontal patterns. A second active pattern containing a first element is between the second core pattern and the horizontal patterns. The second active pattern contains the first element at a higher concentration than a concentration of the first element in the second core pattern.
摘要:
A vertical memory device may include a substrate, a first selection line on the substrate, a plurality of word lines on the first selection line, a second selection line on the plurality of word lines, and a semiconductor channel. The first selection line may be between the plurality of word lines and the substrate, and the plurality of word lines may be between the first and second selection lines. Moreover, the first and second selection lines and the plurality of word lines may be spaced apart in a direction perpendicular with respect to a surface of the substrate. The semiconductor channel may extend away from the surface of the substrate adjacent sidewalls of the first and second selection lines and the plurality of word lines. In addition, portions of the semiconductor channel adjacent the second selection line may be doped with indium and/or gallium. Related methods are also discussed.
摘要:
A semiconductor device is provided. The semiconductor includes a plurality of interlayer insulating layers and a plurality of gate electrodes alternately stacked in a first direction on a substrate. The plurality of interlayer insulating layers and the plurality of gate electrodes constitute a side surface extended in the first direction. A gate dielectric layer is disposed on the side surface. A channel pattern is disposed on the gate dielectric layer. The gate dielectric layer includes a protective pattern, a charge trap layer, and a tunneling layer. The protective pattern includes a portion disposed on a corresponding gate electrode of the plurality of gate electrodes. The charge trap layer is disposed on the protective pattern. The tunneling layer is disposed between the charge trap layer and the channel pattern. The protective pattern is denser than the charge trap layer.
摘要:
A semiconductor device is provided. The semiconductor includes a plurality of interlayer insulating layers and a plurality of gate electrodes alternately stacked in a first direction on a substrate. The plurality of interlayer insulating layers and the plurality of gate electrodes constitute a side surface extended in the first direction. A gate dielectric layer is disposed on the side surface. A channel pattern is disposed on the gate dielectric layer. The gate dielectric layer includes a protective pattern, a charge trap layer, and a tunneling layer. The protective pattern includes a portion disposed on a corresponding gate electrode of the plurality of gate electrodes. The charge trap layer is disposed on the protective pattern. The tunneling layer is disposed between the charge trap layer and the channel pattern. The protective pattern is denser than the charge trap layer.
摘要:
A non-volatile memory device having a vertical structure includes a semiconductor layer, a sidewall insulation layer extending in a vertical direction on the semiconductor layer, and having one or more protrusion regions, first control gate electrodes arranged in the vertical direction on the semiconductor layer, and respectively contacting one of portions of the sidewall insulation layer where the one or more protrusion regions are not formed and second control gate electrodes arranged in the vertical direction on the semiconductor layer, and respectively contacting one of the one or more protrusion regions.
摘要:
A method of forming a silicon layer on a substrate includes providing a silicon source gas to form an amorphous silicon layer on a substrate and providing a dopant source gas to adsorb dopants onto the amorphous silicon layer to form a dopant layer on a surface of the amorphous silicon layer. Related floating gates are also disclosed.
摘要:
A non-volatile memory device comprises a floating gate formed across an active region of a semiconductor substrate, and a control gate electrode formed over the floating gate. An insulation pattern is formed between the floating gate and the active region such that the insulation pattern makes contact with a bottom edge and a sidewall of the floating gate.