Abstract:
A semiconductor device and a method of manufacturing the same are provided. The semiconductor device includes insulation layers and gate electrodes alternately stacked on a substrate, a vertical channel vertically passing through the insulation layers and the gate electrodes, and a threshold voltage controlling insulation layer, a tunnel insulation layer and a charge storage layer disposed between the vertical channel and the gate electrodes, wherein the threshold voltage controlling insulation layer is disposed between the charge storage layer and the vertical channel and including a material configured to suppress an inversion layer from being formed in the vertical channel.
Abstract:
A semiconductor device and a method of manufacturing the same are provided. The semiconductor device includes insulation layers and gate electrodes alternately stacked on a substrate, a vertical channel vertically passing through the insulation layers and the gate electrodes, and a threshold voltage controlling insulation layer, a tunnel insulation layer and a charge storage layer disposed between the vertical channel and the gate electrodes, wherein the threshold voltage controlling insulation layer is disposed between the charge storage layer and the vertical channel and including a material configured to suppress an inversion layer from being formed in the vertical channel.
Abstract:
The inventive concepts provide methods of manufacturing a semiconductor device. The method includes forming a thin layer structure including insulating layers and sacrificial layers alternately and repeatedly stacked on a substrate, forming a through-hole penetrating the thin layer structure and exposing the substrate, forming a semiconductor layer covering an inner sidewall of the through-hole and partially filling the through-hole, oxidizing a first portion of the semiconductor layer to form a first insulating layer, and injecting oxygen atoms into a second portion of the semiconductor layer. An oxygen atomic concentration of the second portion is lower than that of the first insulating layer. Oxidizing the first portion and injecting the oxygen atoms into the second portion are performed using an oxidation process at the same time.
Abstract:
A non-volatile memory device includes a field region that defines an active region in a semiconductor substrate, a floating gate pattern on the active region, a dielectric layer on the floating gate pattern and a control gate on the dielectric layer. The control gate includes a first conductive pattern that has a first composition that crystallizes in a first temperature range, and a second conductive pattern that has a second composition that is different from the first composition and that crystallizes in a second temperature range that is lower than the first temperature range, the first conductive pattern being between the dielectric layer and the second conductive pattern.
Abstract:
A semiconductor device includes gate electrodes vertically stacked on a substrate, and channel holes passing through the gate electrodes to extend perpendicularly to the substrate and including a gate dielectric layer and a channel area. The gate dielectric layer may be formed of a plurality of layers, and at least one layer among the plurality of layers may have different thicknesses in different locations.
Abstract:
A semiconductor device is provided. The semiconductor includes a plurality of interlayer insulating layers and a plurality of gate electrodes alternately stacked in a first direction on a substrate. The plurality of interlayer insulating layers and the plurality of gate electrodes constitute a side surface extended in the first direction. A gate dielectric layer is disposed on the side surface. A channel pattern is disposed on the gate dielectric layer. The gate dielectric layer includes a protective pattern, a charge trap layer, and a tunneling layer. The protective pattern includes a portion disposed on a corresponding gate electrode of the plurality of gate electrodes. The charge trap layer is disposed on the protective pattern. The tunneling layer is disposed between the charge trap layer and the channel pattern. The protective pattern is denser than the charge trap layer.
Abstract:
A vertical memory device includes a substrate, a first cell block and a second cell block. The substrate includes a central region and a peripheral region. At least one first cell block is on the central region. The first cell block includes a first channel and first gate lines. At least one second cell block is on the peripheral region. The second cell block includes a second channel and second gate lines. The second cell block has a width greater than a width of the first cell block. The first and second channel extend in a first direction vertical to a top surface of the substrate. The first gate lines surround the first channel and the first gate lines are spaced apart from each other in the first direction. The second gate lines surround the second channel and are spaced apart from each other in the first direction.
Abstract:
The inventive concepts provide methods of manufacturing a semiconductor device. The method includes forming a thin layer structure including insulating layers and sacrificial layers alternately and repeatedly stacked on a substrate, forming a through-hole penetrating the thin layer structure and exposing the substrate, forming a semiconductor layer covering an inner sidewall of the through-hole and partially filling the through-hole, oxidizing a first portion of the semiconductor layer to form a first insulating layer, and injecting oxygen atoms into a second portion of the semiconductor layer. An oxygen atomic concentration of the second portion is lower than that of the first insulating layer. Oxidizing the first portion and injecting the oxygen atoms into the second portion are performed using an oxidation process at the same time.
Abstract:
A non-volatile memory device includes a field region that defines an active region in a semiconductor substrate, a floating gate pattern on the active region, a dielectric layer on the floating gate pattern and a control gate on the dielectric layer. The control gate includes a first conductive pattern that has a first composition that crystallizes in a first temperature range, and a second conductive pattern that has a second composition that is different from the first composition and that crystallizes in a second temperature range that is lower than the first temperature range, the first conductive pattern being between the dielectric layer and the second conductive pattern.
Abstract:
A non-volatile memory device includes a field region that defines an active region in a semiconductor substrate, a floating gate pattern on the active region, a dielectric layer on the floating gate pattern and a control gate on the dielectric layer. The control gate includes a first conductive pattern that has a first composition that crystallizes in a first temperature range, and a second conductive pattern that has a second composition that is different from the first composition and that crystallizes in a second temperature range that is lower than the first temperature range, the first conductive pattern being between the dielectric layer and the second conductive pattern.