Abstract:
In described embodiments, a method for producing sample decisions with a digital signal processing-based SERDES device includes converting an analog signal to a digital signal, equalizing the digital signal, selecting inputs for a phase detector in a main CDR loop, computing a phase difference signal, producing a phase skew to signals for a last equalization stage by a first interpolation filter bank, generating a control signal to control the phase provided by the first interpolation filter bank by a phase skew adaptation loop, and updating the phase skew values to generate a resulting decision. A device includes a first interpolation filter bank inserted between the equalization stages is configured to generate phase skew signals to a last equalization stage and a phase skew loop responsive to the last equalization stage is configured to adjust the phase skew provided by the first interpolation filter bank.
Abstract:
In order to initialize the phase of the recovered clock signal used in clock-and-data recovery (CDR) circuitry, the normal, on-line CDR processing is disabled. The sum of the absolute values of analog-to-digital converter (ADC) samples are generated for different clock phases over each unit interval (UI) of the analog signal sampled by the ADC for a specified period of time. The phase corresponding to the maximum sum is selected as the initial phase for the recovered clock signal for enabled, on-line CDR processing, which among other things, automatically updates the clock phase to ensure that the ADC samples the analog signal near the center of each UI.
Abstract:
An apparatus comprising an equalizer circuit, a converter circuit and an adaptation circuit. The equalizer circuit may be configured to generate an intermediate signal in response to an input signal and a gradient value. The converter circuit may be configured to generate a digital signal comprising a plurality of symbol values, including a main cursor symbol value, in response to the intermediate signal. The adaptation circuit may be configured to generate the gradient value in response to a plurality of the symbol values before the main cursor symbol value, a plurality of symbol values after the main cursor symbol value, and an error value.
Abstract:
The present invention includes receiving a signal from an output of a dispersive communication channel established between a transmitter and a receiver, determining normalized Nyquist energy of the signal transmitted along the dispersive communication channel established between the transmitter and the receiver, and generating a mapping table configured to identify peaking value at or above a selected tolerance level at or near the Nyquist frequency for a signal received by the receiver based on the normalized Nyquist energy.
Abstract:
Described embodiments include a receiver for a serial-deserializer or the like. The receiver has adaptive offset voltage compensation capability. The offset voltage is canceled by a controller in a feedback loop to generate a compensation signal depending on a data decision error signal or by timing signals used for clock recovery.
Abstract:
A multi-channel analog-to-digital (ADC) converter coupled to a clock-and-data-recovery loop that has a plurality of clock-recovery circuits, each configured to set the sampling phase for a respective one of the ADC channels in a manner that causes the different sampling phases to be appropriately time-aligned with one another for time-interleaved operation of the ADC channels. In an example embodiment, an individual clock-recovery circuit comprises a phase detector and a loop filter. Loop filters corresponding to different clock-recovery circuits may be coupled to one another by having shared circuit elements in their frequency-tracking paths and/or by being configured to receive timing gradients from more than one phase detector, including the phase detector of a selected one of the clock-recovery circuits.
Abstract:
A frequency band estimator for use in a data receiver or the like to enhance sinusoidal jitter tolerance by the clock and data recovery device (CDR) in the receiver. The detector uses two moving-average filters of different tap lengths that receive a gain-controlled signal from within the CDR. Output signals from the moving average filters are processed to determine a half-wave time period for each output signal by measuring the number clock cycles occurring between transitions of each output signal. The number of clock cycles of the longest half-wave period is compared to multiple values representing frequency limits of various frequency bands to determine which frequency band to classify jitter the gain-controlled signal. The determined frequency band is used to select from a look-up table a set of gain values for use in the CDR.
Abstract:
Described embodiments include a receiver for a serial-deserializer or the like. The receiver has adaptive offset voltage compensation capability. The offset voltage is canceled by a controller in a feedback loop to generate a compensation signal depending on a data decision error signal or by timing signals used for dock recovery.
Abstract:
In order to initialize the phase of the recovered clock signal used in clock-and-data recovery (CDR) circuitry, the normal, on-line CDR processing is disabled. The sum of the absolute values of analog-to-digital converter (ADC) samples are generated for different clock phases over each unit interval (UI) of the analog signal sampled by the ADC for a specified period of time. The phase corresponding to the maximum sum is selected as the initial phase for the recovered clock signal for enabled, on-line CDR processing, which among other things, automatically updates the clock phase to ensure that the ADC samples the analog signal near the center of each UI.
Abstract:
A serializer-deserializer using series-coupled signal processing blocks to process digitized input symbols, each block having a coefficient input. Each of plurality of series-coupled coefficient delay elements has a control input and a coefficient output coupling to the coefficient inputs of a corresponding one of the signal processing modules, is controlled by a shift register having an input and a plurality of outputs, each one of the plurality of outputs coupled to the control input of a corresponding one of the coefficient delay elements. An adaptation unit has a flag output coupled to the input of the shift register, and a first coefficient output coupled to the input of a first one of the coefficient delay elements. The adaptation unit generates a flag when the adaptation unit generates a coefficient, and the coefficient is entered into the first one of the coefficient delay elements when the shift register receives the flag.