Abstract:
An elastomeric particle (1, 1, 1″) comprises a non-conducting elastomeric body (2) having an electrically conducting surface (4a, 4b, 6). Pressure sensor elements (20, 20′, 20″; 30, 30′, 30″, 30′″) comprising such elastomeric particles are disclosed, as well as sensor clusters (50″, 50′″, 50IV, 50V, 50VI, 50VII, 70) comprising such sensor elements. There is also disclosed a pressure sensor element (40, 40′, 40″, 40′″, 40IV, 40V, 40VI, 40VII), comprising a resistive element (44, 44′, 44″) providing a conduction path, a first electrode (42a, 42a-1, 42a-2, 42a-3, 42a-4, 42a-5, 42a-6), connected to the resistive element, a second electrode (42b, 42b′), which in a quiescent state is spaced from said first electrode, wherein the second electrode, when the pressure sensor element is subjected to a pressure, is arranged to contact said first electrode or said resistive element. Systems comprising such sensor elements and sensor clusters are disclosed, as well as methods of their fabrication.
Abstract:
An elastomeric particle (1, 1, 1″) comprises a non-conducting elastomeric body (2) having an electrically conducting surface (4a, 4b, 6). Pressure sensor elements (20, 20′, 20″; 30, 30′, 30″, 30′″) comprising such elastomeric particles are disclosed, as well as sensor clusters (50″, 50′″, 50IV, 50V, 50VI, 50VII, 70) comprising such sensor elements. There is also disclosed a pressure sensor element (40, 40′, 40″, 40′″, 40IV, 40V, 40VI, 40VII), comprising a resistive element (44, 44′, 44″) providing a conduction path, a first electrode (42a, 42a-1, 42a-2, 42a-3, 42a-4, 42a-5, 42a-6), connected to the resistive element, a second electrode (42b, 42b′), which in a quiescent state is spaced from said first electrode, wherein the second electrode, when the pressure sensor element is subjected to a pressure, is arranged to contact said first electrode or said resistive element. Systems comprising such sensor elements and sensor clusters are disclosed, as well as methods of their fabrication.
Abstract:
Systems and methods for monitoring and/or assessing metabolic and/or cardiopulmonary parameters of a subject are disclosed. Systems and methods for high speed monitoring of metabolic parameters of a subject in a substantially unrestricted setting are disclosed. Further disclosed are wearable systems and methods for substantially unobtrusive monitoring of a breath stream from a subject. Also disclosed are wearable systems and methods for real-time monitoring of the respiratory function and/or one or more disease states of a subject. Data systems to coordinate simultaneous monitoring of one or more metabolic and/or cardiopulmonary parameters of a plurality of subjects are also disclosed.
Abstract:
A system for monitoring a body includes a surgical implant configured for implantation within a body, a sensory module coupled to the surgical implant and configured for implantation into the body in conjunction with the surgical implant, and a communication module coupled to the surgical implant and configured for implantation into a body in conjunction with the surgical implant. The sensory module is configured to monitor characteristics of the surgical implant, surrounding tissue and/or adjacent tissue. The communication module is electrically coupled to the sensory module and is configured to communicate a signal derived from said characteristics to an external entity.
Abstract:
Systems, devices, and methods for performing precise treatment, mapping, and/or testing of tissues are disclosed. Systems, devices, and methods for administering an agent to one or more a precise regions within a tissue mass are disclosed. Systems, devices, and methods for treating targeted regions within a tissue mass are disclosed. Systems, devices, and methods for identifying, localizing, monitoring neural traffic in the vicinity of, quantifying neural traffic in the vicinity of, and mapping neural traffic near targeted regions within a tissue mass are disclosed.
Abstract:
An apparatus (10) for controlling flow of fluid from a wound site of a patient may include a chamber (28) connectable to a wound site and a reservoir (16). The chamber (28) may have a first deformed state, and a second state in which it is not deformed or less deformed than in the first state. The chamber (28) may be adapted to manage fluid flow between the wound site and the reservoir (16) during transition of the chamber (28) between the first state and the second state. An actuator element (64) of the apparatus (10) may be adapted to operate on the chamber (28) to transition the chamber (28) from the second state to the first state.
Abstract:
A device for compressive treatment of a body part comprises a compression member, adapted to at least partly encircle the body part, and an actuation unit, arranged to tighten the compression member to provide a compressive force to the body part. The actuation unit comprises an active material actuator. There is also disclosed a system comprising such a device and methods for its therapeutic, cosmetic and non-therapeutic use and operation.
Abstract:
A transducer is designed and fabricated using stretched rolled electroactive polymers. The invention includes the design, fabrication, and integration of a stretched rolled actuator system with corresponding sensing, control and power subsystems. The invention presented is based on the improved performance of electroactive polymer transducers that can be achieve by prestretching the polymeric material. In this invention, the preferred stretch is maintained in a rolled configuration by introducing structural elements to the transducer. The structural elements facilitate fabrication of the transducer as well as provide a compact and efficient means of maintaining stretch and the desired boundary conditions on the electroactive polymer during operation. These conditions together are used to improve and tailor the strain response of the transducer.
Abstract:
Compositions, systems, devices, and methods for performing precise chemical treatment of tissues are disclosed. Systems, devices, and methods for administering a chemical agent to one or more a precise regions within a tissue mass are disclosed. Compositions, systems, devices, and methods for treating targeted regions within a tissue mass are disclosed.
Abstract:
Compositions, systems, devices, and methods for performing precise chemical treatment of tissues are disclosed. Systems, devices, and methods for administering a chemical agent to one or more a precise regions within a tissue mass are disclosed. Compositions, systems, devices, and methods for treating targeted regions within a tissue mass are disclosed. Systems, devices, and methods for identifying, localizing, monitoring neural traffic in the vicinity of, quantifying neural traffic in the vicinity of, and mapping neural traffic near targeted regions within a tissue mass are disclosed.