摘要:
A light-emitting semiconductor device provides an active layer which comprises thirteen (13) layers that includes six (6) pairs of quantum barrier layers made of Al0.95In0.05N and quantum well layers made of Al0.70In0.30N, which are laminated together alternately. The semiconductor device may also comprise a quantum well layer having a high composition ratio of indium (In). Forming the quantum barrier layer and the quantum well layer to have a high composition ratio of indium (In) increases the lattice constant of the active layer of the semiconductor device.
摘要翻译:一种发光半导体器件提供了一种有源层,其包括十三(13)层,其包括六(6)对量子阻挡层,所述量子势垒层由Al 0.95 N和N N N制成, 交替地层叠在一起的由Al 0.70 N 3 O 3 N制成的量子阱层。 半导体器件还可以包括具有高的铟(In)组成比的量子阱层。 形成量子势垒层和量子阱层以具有高的铟(In)组成比增加了半导体器件的有源层的晶格常数。
摘要:
A light-emitting diode or laser diode is provided which uses a Group III nitride compound semiconductor satisfying the formula (Al.sub.x Ga.sub.1-x).sub.y In.sub.1-y N, inclusive of 0.ltoreq.x.ltoreq.1, and 0.ltoreq.y.ltoreq.1. A double hetero-junction structure is provided which sandwiches an active layer between layers having wider band gaps than the active layer. The diode has a multi-layer structure which has either a reflecting layer to reflect emission light or a reflection inhibiting layer. The emission light of the diode exits the diode in a direction perpendicular to the double hetero-junction structure. Light emitted in a direction opposite to the light outlet is reflected by the reflecting film toward the direction of the light outlet. Further, the reflection inhibiting film, disposed at or near the light outlet, helps the release of exiting light by minimizing or preventing reflection. As a result, light can be efficiently emitted by the light-generating diode.
摘要翻译:提供一种发光二极管或激光二极管,其使用满足式(Al x Ga 1-x)y In 1-y N的III族氮化物化合物半导体,包括0≤x≤1,0≤y< = 1。 提供了一种双异质结结构,其在活性层之间具有更宽带隙的层之间夹持有源层。 二极管具有多层结构,其具有反射发射光的反射层或反射抑制层。 二极管的发射光在垂直于双异质结结构的方向上离开二极管。 在与光出口相反的方向上发射的光被反射膜反射到光出口的方向。 此外,设置在光出口处或附近的反射抑制膜通过最小化或防止反射来帮助释放出射光。 结果,光可以被发光二极管有效地发射。
摘要:
A method of producing a light-emitting semiconductor device of a group III nitride compound includes forming a high carrier concentration N+-layer satisfying the formula (Alx3Ga1-x3)y3In1-y3N, wherein 0≦x3≦1, 0≦y3≦1 and 0≦x3+y3≦1, forming an emission layer of a group III nitride compound semiconductor satisfying the formula, Alx1Gay1In1-x1-y1N, where 0≦x1≦1, 0≦y1≦1 and 0≦x1+y1≦1 on the high carrier concentration layer N+-layer, and forming a P-layer of a P-type conduction, on the emission layer, the P-layer including aluminum gallium nitride satisfying the formula Alx2Ga1-x2N, wherein 0≦x2≦1.
摘要翻译:制备III族氮化物化合物的发光半导体器件的方法包括形成满足式(Al x Ga Ga 1-x 3)y 3 In 1-y 3 N的高载流子浓度N +层,其中0&nlE; x3&nlE; 1,0
摘要:
The present invention provides a method for producing a Group III nitride compound semiconductor, which method permits only minimal reaction of the semiconductor with a hetero-substrate during epitaxial growth and induces no cracks in the Group III nitride compound semiconductor even when the semiconductor is cooled to room temperature. The method includes a buffer layer formation step for forming a gas-etchable buffer layer on the hetero-substrate, and a semiconductor formation step for epitaxially growing the Group III nitride compound semiconductor on the buffer layer through a vapor phase growth method, wherein at least a portion of the buffer layer is gas-etched during or after the semiconductor formation step.
摘要:
A light-emitting semiconductor device (10) consecutively includes a sapphire substrate (1), an AlN buffer layer (2), a silicon (Si) doped GaN n+-layer (3) of high carrier (n-type) concentration, a Si-doped (Alx3Ga1-x3)y3In1-y3N n+-layer (4) of high carrier (n-type) concentration, a zinc (Zn) and Si-doped (Alx2Ga1-x2)y2In1-y2N emission layer (5), and a Mg-doped (Alx1Ga1-x1)y1In1-y1N p-layer (6). The AlN layer (2) has a 500 Å thickness. The GaN n+-layer (3) has about a 2.0 μm thickness and a 2×1018/cm3 electron concentration. The n+-layer (4) has about a 2.0 μm thickness and a 2×1018/cm3 electron concentration. The emission layer (5) has about a 0.5 μm thickness. The p-layer 6 has about a 1.0 μm thickness and a 2×1017/cm3 hole concentration. Nickel electrodes (7, 8) are connected to the p-layer (6) and n+-layer (4), respectively. A groove (9) electrically insulates the electrodes (7, 8). The composition ratio of Al, Ga, and In in each of the layers (4, 5, 6) is selected to meet the lattice constant of GaN in the n+-layer (3). The LED (10) is designed to improve luminous intensity and to obtain purer blue color.
摘要翻译:发光半导体器件(10)连续地包括蓝宝石衬底(1),AlN缓冲层(2),高载体的硅(Si)掺杂GaN n + +层(3) (n型)浓度,Si掺杂(Al x3 Ga 1-x 3)y 3在1-y 3中, 具有高载流子(n型)浓度的氮(Zn)和Si掺杂(Al 2 x 2 Ga 2) 1-x2 sub> Y2在1-y2 N发射层(5)中,以及Mg掺杂(Al x1 Ga) 在1-y1 N p层(6)中。 AlN层(2)的厚度为500埃。 GaN n + +(3)具有约2.0μm厚度和2×10 18 / cm 3电子浓度。 n + +层(4)具有约2.0μm厚度和2×10 18 / cm 3电子浓度。 发射层(5)的厚度约为0.5μm。 p层6具有约1.0μm厚度和2×10 17 / cm 3孔浓度。 镍电极(7,8)分别连接到p层(6)和n + +层(4)。 一个凹槽(9)使电极(7,8)电绝缘。 选择各层(4,5,6)中的Al,Ga和In的组成比以满足n +层(3)中的GaN的晶格常数。 LED(10)被设计为提高发光强度并获得更纯的蓝色。
摘要:
A light-emitting semiconductor device (10) consecutively includes a sapphire substrate (1), an AlN buffer layer (2), a silicon (Si) doped GaN n+-layer (3) of high carrier (n-type) concentration, a Si-doped (Alx3Ga1-x3)y3In1-y3N n+-layer (4) of high carrier (n-type) concentration, a zinc (Zn) and Si-doped (Alx2Ga1-x2)y2In1-y2N emission layer (5), and a Mg-doped (Alx1Ga1-x1)y1In1-y1N p-layer (6). The AlN layer (2) has a 500 Å thickness. The GaN n+-layer (3) has about a 2.0 μm thickness and a 2×1018/cm3 electron concentration. The n+-layer (4) has about a 2.0 μm thickness and a 2×1018/cm3 electron concentration. The emission layer (5) has about a 0.5 μm thickness. The p-layer 6 has about a 1.0 μm thickness and a 2×1017/cm3 hole concentration. Nickel electrodes (7, 8) are connected to the p-layer (6) and n+-layer (4), respectively. A groove (9) electrically insulates the electrodes (7, 8). The composition ratio of Al, Ga, and In in each of the layers (4, 5, 6) is selected to meet the lattice constant of GaN in the n+-layer (3). The LED (10) is designed to improve luminous intensity and to obtain purer blue color.
摘要翻译:发光半导体器件(10)连续地包括蓝宝石衬底(1),AlN缓冲层(2),高载体的硅(Si)掺杂GaN n + +层(3) (n型)浓度,Si掺杂(Al x3 Ga 1-x 3)y 3在1-y 3中, 具有高载流子(n型)浓度的氮(Zn)和Si掺杂(Al 2 x 2 Ga 2) 1-x2 sub> Y2在1-y2 N发射层(5)中,以及Mg掺杂(Al x1 Ga) 在1-y1 N p层(6)中。 AlN层(2)的厚度为500埃。 GaN n + +(3)具有约2.0μm厚度和2×10 18 / cm 3电子浓度。 n + +层(4)具有约2.0μm厚度和2×10 18 / cm 3电子浓度。 发射层(5)的厚度约为0.5μm。 p层6具有约1.0μm厚度和2×10 17 / cm 3孔浓度。 镍电极(7,8)分别连接到p层(6)和n + +层(4)。 一个凹槽(9)使电极(7,8)电绝缘。 选择各层(4,5,6)中的Al,Ga和In的组成比以满足n +层(3)中的GaN的晶格常数。 LED(10)被设计为提高发光强度并获得更纯的蓝色。
摘要:
A light-emitting semiconductor device (10) consecutively includes a sapphire substrate (1), an AlN buffer layer (2), a silicon (Si) doped GaN n+-layer (3) of high carrier (n-type) concentration, a Si-doped (Alx3Ga1-x3)y3In1-y3N n+-layer (4) of high carrier (n-type) concentration, a zinc (Zn) and Si-doped (Alx2Ga1-x2)y2In1-y2N emission layer (5), and a Mg-doped (Alx1Ga1-x1)y1In1-y1N p-layer (6). The AlN layer (2) has a 500 Å thickness. The GaN n+-layer (3) has about a 2.0 μm thickness and a 2×1018/cm3 electron concentration. The n+-layer (4) has about a 2.0 μm thickness and a 2×1018/cm3 electron concentration. The emission layer (5) has about a 0.5 μm thickness. The p-layer 6 has about a 1.0 μm thickness and a 2×1017/cm3 hole concentration. Nickel electrodes (7, 8) are connected to the p-layer (6) and n+-layer (4), respectively. A groove (9) electrically insulates the electrodes (7, 8). The composition ratio of Al, Ga, and In in each of the layers (4, 5, 6) is selected to meet the lattice constant of GaN in the n+-layer (3). The LED (10) is designed to improve luminous intensity and to obtain purer blue color.
摘要:
A light-emitting semiconductor device (10) consecutively includes a sapphire substrate (1), an AlN buffer layer (2), a silicon (Si) doped GaN n+-layer (3) of high carrier (n-type) concentration, a Si-doped (Alx3Ga1-x3)y3In1-y3N n+-layer (4) of high carrier (n-type) concentration, a zinc (Zn) and Si-doped (Alx2Ga1-x2)y2In1-y2N emission layer (5), and a Mg-doped (Alx1Ga1-x1)y1In1-y1N p-layer (6). The AlN layer (2) has a 500 Å thickness. The GaN n+-layer (3) has about a 2.0 μm thickness and a 2×1018/cm3 electron concentration. The n+-layer (4) has about a 2.0 μm thickness and a 2×1018/cm3 electron concentration. The emission layer (5) has about a 0.5 μm thickness. The p-layer 6 has about a 1.0 μm thickness and a 2×1017/cm3 hole concentration. Nickel electrodes (7, 8) are connected to the p-layer (6) and n+-layer (4), respectively. A groove (9) electrically insulates the electrodes (7, 8). The composition ratio of Al, Ga, and In in each of the layers (4, 5, 6) is selected to meet the lattice constant of GaN in the n+-layer (3). The LED (10) is designed to improve luminous intensity and to obtain purer blue color.
摘要:
A light-emitting semiconductor device (10) consecutively includes a sapphire substrate (1), an AlN buffer layer (2), a silicon (Si) doped GaN n+-layer (3) of high carrier (n-type) concentration, a Si-doped (Alx3Ga1-x3)y3In1-y3N n+-layer (4) of high carrier (n-type) concentration, a zinc (Zn) and Si-doped (Alx2Ga1-x2)y2In1-y2N emission layer (5), and a Mg-doped (Alx1Ga1-x1)y1In1-y1N p-layer (6). The AlN layer (2) has a 500 Å thickness. The GaN n+-layer (3) has about a 2.0 μm thickness and a 2×1018/cm3 electron concentration. The n+-layer (4) has about a 2.0 μm thickness and a 2×1018/cm3 electron concentration. The emission layer (5) has about a 0.5 μm thickness. The p-layer 6 has about a 1.0 μm thickness and a 2×1017/cm3 hole concentration. Nickel electrodes (7, 8) are connected to the p-layer (6) and n+-layer (4), respectively. A groove (9) electrically insulates the electrodes (7, 8). The composition ratio of Al, Ga, and In in each of the layers (4, 5, 6) is selected to meet the lattice constant of GaN in the n+-layer (3). The LED (10) is designed to improve luminous intensity and to obtain purer blue color.
摘要翻译:发光半导体器件(10)连续地包括蓝宝石衬底(1),AlN缓冲层(2),高载体的硅(Si)掺杂GaN n + +层(3) (n型)浓度,Si掺杂(Al x3 Ga 1-x 3)y 3在1-y 3中, 具有高载流子(n型)浓度的氮(Zn)和Si掺杂(Al 2 x 2 Ga 2) 1-x2 sub> Y2在1-y2 N发射层(5)中,以及Mg掺杂(Al x1 Ga) 在1-y1 N p层(6)中。 AlN层(2)的厚度为500埃。 GaN n + +层(3)具有约2.0μm厚度和2×10 18 / cm 3电子浓度。 n + +层(4)具有约2.0μm厚度和2×10 18 / cm 3电子浓度。 发射层(5)的厚度约为0.5μm。 p层6具有约1.0μm厚度和2×10 17 / cm 3孔浓度。 镍电极(7,8)分别连接到p层(6)和n + +层(4)。 一个凹槽(9)使电极(7,8)电绝缘。 选择各层(4,5,6)中的Al,Ga和In的组成比以满足n +层(3)中的GaN的晶格常数。 LED(10)被设计为提高发光强度并获得更纯的蓝色。
摘要:
A light-emitting semiconductor device (10) consecutively includes a sapphire substrate (1), an AlN buffer layer (2), a silicon (Si) doped GaN n+-layer (3) of high carrier (n-type) concentration, a Si-doped (Alx3Ga1-x3)y3In1-y3N n+-layer (4) of high carrier (n-type) concentration, a zinc (Zn) and Si-doped (Alx2Ga1-x2)y2In1-y2N emission layer (5), and a Mg-doped (Alx1Ga1-x1)y1In1-y1N p-layer (6). The AlN layer (2) has a 500 Å thickness. The GaN n+-layer (3) has about a 2.0 μm thickness and a 2×1018/cm3 electron concentration. The n+-layer (4) has about a 2.0 μm thickness and a 2×1018/cm3 electron concentration. The emission layer (5) has about a 0.5 μm thickness. The p-layer 6 has about a 1.0 μm thickness and a 2×1017/cm3 hole concentration. Nickel electrodes (7, 8) are connected to the p-layer (6) and n+-layer (4), respectively. A groove (9) electrically insulates the electrodes (7, 8). The composition ratio of Al, Ga, and In in each of the layers (4, 5, 6) is selected to meet the lattice constant of GaN in the n+-layer (3). The LED (10) is designed to improve luminous intensity and to obtain purer blue color.
摘要翻译:发光半导体器件(10)连续地包括蓝宝石衬底(1),AlN缓冲层(2),高载体的硅(Si)掺杂GaN n + +层(3) (n型)浓度,Si掺杂(Al x3 Ga 1-x 3)y 3在1-y 3中, 具有高载流子(n型)浓度的氮(Zn)和Si掺杂(Al 2 x 2 Ga 2) 1-x2 sub> Y2在1-y2 N发射层(5)中,以及Mg掺杂(Al x1 Ga) 在1-y1 N p层(6)中。 AlN层(2)的厚度为500埃。 GaN n + +(3)具有约2.0μm厚度和2×10 18 / cm 3电子浓度。 n + +层(4)具有约2.0μm厚度和2×10 18 / cm 3电子浓度。 发射层(5)的厚度约为0.5μm。 p层6具有约1.0μm厚度和2×10 17 / cm 3孔浓度。 镍电极(7,8)分别连接到p层(6)和n + +层(4)。 一个凹槽(9)使电极(7,8)电绝缘。 选择各层(4,5,6)中的Al,Ga和In的组成比以满足n +层(3)中的GaN的晶格常数。 LED(10)被设计为提高发光强度并获得更纯的蓝色。