摘要:
A semiconductor device having a semiconductor element and a connecting substrate, wherein the connecting substrate includes a flat sheet-like insulation member, having first and second surfaces. The first surface is provided with solder bumps projecting at locations corresponding to locations of electrodes on an electrode/terminal-formed face of the semiconductor element, or terminals formed at ends of patterned wirings formed by rerouting a conductive material on the electrode/terminal-formed fact. The second surface is provided with external connection terminals having a larger diameter than the solder bumps on the first surface and being electrically connected with the solder bumps through a via piercing the insulation member in the direction of its thickness. The semiconductor element is mounted on the connecting substrate by bonding the electrodes or the terminals on the electrode/terminal-formed face of the semiconductor element to the solder bumps.
摘要:
A substrate for inspecting an electronic device used for an electrical test of the electronic device having bump-shaped connection terminals, comprises: opening sections, the diameter of each opening being determined so that a connection terminal can be inserted into and drawn out from the opening, are formed penetrating the insulating substrate in a region on one side of an insulating substrate on which the electronic device is mounted, corresponding to an arrangement of the connection terminals; and wiring patterns, each of which is composed of a pad section being exposed onto a bottom face of the opening so that the pad can come into contact with the connection terminal so as to accomplish electrical continuity, a connecting pad section formed in a region outside of the region in which the pad section is formed, which comes into contact with a contact terminal of an inspection device so as to accomplish electrical continuity, and a wiring section for electrically connecting the pad section with the connecting pad section, are formed on the other side of the insulating substrate.
摘要:
A semiconductor light emitting device which can suppress the self-absorption of light propagating in a semiconductor film without hindering current spread therein. A reflecting film provided between a support substrate and the semiconductor film of the device includes reflecting electrodes that are in ohmic contact with the semiconductor film and that form current paths between the reflecting electrodes and surface electrodes in the semiconductor film. The reflecting electrodes are in contact with the semiconductor film at such positions that the surface electrodes, provided on the light-extraction-surface-side surface of the semiconductor film, are not over the reflecting electrodes along a direction of the thickness of the semiconductor film. The semiconductor film has reflecting-surface-side recesses made in regions containing regions directly under the surface electrodes and recessed toward the light-extraction-surface side, and reflecting-surface-side protrusions provided in regions containing parts of the semiconductor film in contact with the reflecting electrodes and bonded to the support substrate via the reflecting film.
摘要:
In an optical semiconductor device including an epitaxially-grown light emitting semiconductor layer and a reflective electrode layer provided at a counter face of the light emitting semiconductor layer opposing a light extracting face thereof, a support electrode layer is provided between the reflective electrode layer and the counter face of the light emitting semiconductor layer and is adapted to support the light emitting semiconductor layer and electrically connect the light emitting semiconductor layer to the reflective electrode layer. Also, a total area of the support electrode layer is smaller than an area of the reflective electrode layer. Further, an air gap at a periphery of the support electrode layer and the reflective electrode layer serves as a reflective mirror.
摘要:
A semiconductor light-emitting element with a counter electrode structure can include a first electrode including at least one linear first electrode piece that is disposed on a surface of a first semiconductor layer close to the support substrate and in ohmic contact with the first semiconductor layer, a second electrode including at least one linear second electrode piece that is disposed on a surface of a second semiconductor layer and in ohmic contact with the second semiconductor layer. A plurality of conical projections can be formed on the second semiconductor layer. The first electrode piece and the second electrode piece can be disposed soas not to overlap with each other in a stacked direction of the semiconductor light-emitting stacked body but to be parallel with each other when viewed from above.
摘要:
A semiconductor light-emitting device includes a reflective electrode on a support; a first cladding layer; a light-emitting layer; a second cladding layer having a terrace structure formed of recesses and protrusions, a light-extracting structure having projections and depressions being formed on top surfaces of the protrusions and bottom surfaces of the recesses; and surface electrodes on the top surfaces of the protrusions. The second cladding layer has a stacked structure, which includes a first current-spreading layer, a first light-extracting layer on the first current-spreading layer and having the light-extracting structure on the bottom surfaces of the recesses, a second current-spreading layer on the first light-extracting layer, and a second light-extracting layer on the second current-spreading layer and having the light-extracting structure on the top surfaces of the protrusions, and the first and second light-extracting layer have lower light absorptance and higher resistance than the first and second current-spreading layer.
摘要:
A semiconductor light-emitting element with a counter electrode structure can include a first electrode including at least one linear first electrode piece that is disposed on a surface of a first semiconductor layer close to the support substrate and in ohmic contact with the first semiconductor layer, a second electrode including at least one linear second electrode piece that is disposed on a surface of a second semiconductor layer and in ohmic contact with the second semiconductor layer. A plurality of conical projections can be formed on the second semiconductor layer. The first electrode piece and the second electrode piece can be disposed so as not to overlap with each other in a stacked direction of the semiconductor light-emitting stacked body but to be parallel with each other when viewed from above.
摘要:
A semiconductor substrate has a plurality of semiconductor chip forming areas and scribe areas including substrate cutting positions arranged between the plurality of semiconductor chip forming areas. An insulating layer having first opening portions, which expose all or a part of the scribe areas respectively, is formed on the semiconductor substrate. A solder resist layer having second opening portions, which expose all or a part of the scribe areas respectively, is formed on the insulating layer. Portions of the semiconductor substrate corresponding to the substrate cutting positions are cut.
摘要:
There is provided a method of manufacturing a semiconductor device. The method includes the successive steps of: (a) providing a semiconductor substrate; (b) forming a plurality of semiconductor chips having electrode pads on the semiconductor substrate; (c) forming internal connection terminals on the electrode pads; (d) forming an insulating layer on the plurality of semiconductor chips to cover the internal connection terminals; (e) forming a metal layer on the insulating layer; (f) pushing a whole area of the metal layer to bring the metal layer into contact with upper end portions of the internal connection terminals; (g) pushing portions of the metal layer which contact the upper end portions of the internal connection terminals, thereby forming first recesses in the internal connection terminals, and thereby forming second recesses in the metal layer; and (h) forming wiring patterns by etching the metal layer.
摘要:
A semiconductor light emitting element of the present invention includes a support substrate, a semiconductor film including a light emitting layer, a surface electrode provided on the surface on a light-extraction-surface side of the semiconductor film, and a light reflecting layer. The surface electrode includes first electrode pieces that form ohmic contact with the semiconductor film and a second electrode piece electrically connected to the first electrode pieces. The light reflecting layer includes a reflecting electrode, and the reflecting electrode includes third electrode pieces that form ohmic contact with the semiconductor film and a fourth electrode piece electrically connected to the third electrode pieces and placed opposite to the second electrode piece. Both the second electrode piece and the fourth electrode piece form Schottky contact with the semiconductor film so as to form barriers to prevent forward current in the semiconductor film.