摘要:
A method and article to provide a three-dimensional (3-D) IC wafer process flow. In some embodiments, the method and article include bonding a device layer of a multilayer wafer to a device layer of another multilayer wafer to form a bonded pair of device layers, each of the multilayer wafers including a layer of silicon on a layer of porous silicon (SiOPSi) on a silicon substrate where the device layer is formed in the silicon layer, separating the bonded pair of device layers from one of the silicon substrates by splitting one of the porous silicon layers, and separating the bonded pair of device layers from the remaining silicon substrate by splitting the other one of the porous silicon layers to provide a vertically stacked wafer.
摘要:
Embodiments of a silicon-on-insulator (SOI) wafer having an etch stop layer overlying the buried oxide layer, as well as embodiments of a method of making the same, are disclosed. The etch stop layer may comprise silicon nitride, nitrogen-doped silicon dioxide, or silicon oxynitride, as well as some combination of these materials. Other embodiments are described and claimed.
摘要:
The crystal orientations of monocrystalline semiconductor wafers may be varied by four parameters. The first parameter is the type of crystal seed used to grow the monocrystalline semiconductor ingot from which the wafers are cut. The second parameter is the angle at which the wafer is sliced from the ingot. The third parameter is the crystal plane towards which the wafer is cut. And, the fourth parameter is the position of the orientation indication feature that is used to align the wafer during processing. Different combinations of these parameters provide variations of non-standard crystal orientations of monocrystalline semiconductor wafers and semiconductor-on-insulator substrates such as silicon-on-insulator.
摘要:
A method of forming a silicon-on-insulator wafer begins by providing a silicon wafer having a first surface. An ion implantation process is then used to implant oxygen within the silicon wafer to form an oxygen layer that is buried within the silicon wafer, thereby forming a silicon device layer that remains substantially free of oxygen between the oxygen layer and the first surface. An annealing process is then used to diffuse nitrogen into the silicon wafer, wherein the nitrogen diffuses into the silicon device layer and the oxygen layer. Finally, a second annealing process is used to form a silicon dioxide layer and a silicon oxynitride layer, wherein the second annealing process causes the implanted oxygen to react with the silicon to form the silicon dioxide layer and causes the diffused nitrogen to migrate and react with the silicon and the implanted oxygen to form the silicon oxynitride layer.
摘要:
More complete bonding of wafers may be achieved out to the edge regions of the wafer by constrained bond strengthening of the wafers in a pressure bonding apparatus after direct wafer bonding. The pressure bonding process may be accompanied by the application of not above room temperature.
摘要:
More complete bonding of wafers may be achieved out to the edge regions of the wafer by constrained bond strengthening of the wafers in a pressure bonding apparatus after direct wafer bonding. The pressure bonding process may be accompanied by the application of not above room temperature.
摘要:
More complete bonding of wafers may be achieved out to the edge regions of the wafer by constrained bond strengthening of the wafers in a pressure bonding apparatus after direct wafer bonding. The pressure bonding process may be accompanied by the application of not above room temperature.
摘要:
Embodiments of the present invention propose a bulk heat dissipation substrate that is part of the substrate on which the devices of an integrated circuit are formed. The bulk layer is formed directly under the device layer of a semiconductor substrate and has a thermal conductivity greater than that of the semiconductor substrate. It is a simple passive technique for the removal of heat during device operation. It is also very effective at the removal of heat from hot spots, or areas of excessive heat, because the heat dissipation material is in direct contact with the substrate on which the devices are formed. Such a material is also valuable for the dissipation of heat during the processing of the wafer substrate because it can be coupled to the semiconductor wafer before processing.
摘要:
Embodiments of the invention use silicon on porous silicon wafers to produce a reduced-thickness IC device wafers. After device manufacturing, a temporary support is bonded to the device layer. The uppermost silicon layer is then separated from the silicon substrate by splitting the porous silicon layer. The porous silicon layer and temporary support are then removed and packaging is completed. Embodiments of the invention provide reliable, low cost methods and apparatuses for producing reduced-thickness IC device wafers to substantially increase thermal conductivity between the device layer of an IC device and a heat sink. In alternative embodiments, the layered silicon substrate includes an insulator layer on a layer of porous silicon and a silicon layer on the insulator layer.
摘要:
Embodiments of the invention use silicon on porous silicon wafers to produce a reduced-thickness IC device wafers. After device manufacturing, a temporary support is bonded to the device layer. The uppermost silicon layer is then separated from the silicon substrate by splitting the porous silicon layer. The porous silicon layer and temporary support are then removed and packaging is completed. Embodiments of the invention provide reliable, low cost methods and apparatuses for producing reduced-thickness IC device wafers to substantially increase thermal conductivity between the device layer of an IC device and a heat sink. In alternative embodiments, the layered silicon substrate includes an insulator layer on a layer of porous silicon and a silicon layer on the insulator layer.