Abstract:
A high voltage electrical switch including: a plurality of series connected semiconductor switches; a plurality of rectifiers wherein each rectifier is connected to a semiconductor switch control input of one of the semiconductor switches; a radio frequency signal generator; and a plurality of galvanic isolators, wherein each galvanic isolator connects the radio frequency signal generator to one of the plurality of rectifiers, wherein the plurality of semiconductor switches are isolated from one another.
Abstract:
Consistent with an example embodiment, a user (touch screen) interface has haptic feedback. The user interface comprises, a substrate, a transparent bottom electrode on top of the substrate, a transparent wrinkling layer on top of the transparent bottom electrode, a transparent top electrode on top of the transparent wrinkling layer; and a transparent protective surface on top of the transparent top electrode. The transparent wrinkling layer changes from a smooth surface to a roughened surface upon application of a voltage between the top electrode and the bottom electrode; the voltage generates an electrostatic force mutually attracting the top and bottom electrodes to exert a compressive force upon the transparent wrinkling layer sufficient to generate a degree of surface wrinkling that is perceptible to the touch.
Abstract:
Consistent with an example embodiment, a user (touch screen) interface has haptic feedback. The user interface comprises, a substrate, a transparent bottom electrode on top of the substrate, a transparent wrinkling layer on top of the transparent bottom electrode, a transparent top electrode on top of the transparent wrinkling layer; and a transparent protective surface on top of the transparent top electrode. The transparent wrinkling layer changes from a smooth surface to a roughened surface upon application of a voltage between the top electrode and the bottom electrode; the voltage generates an electrostatic force mutually attracting the top and bottom electrodes to exert a compressive force upon the transparent wrinkling layer sufficient to generate a degree of surface wrinkling that is perceptible to the touch.
Abstract:
An isolated semiconductor circuit comprising: a first sub-circuit and a second sub-circuit; a backend that includes an electrically isolating connector between the first and second sub-circuits; a lateral isolating trench between the semiconductor portions of the first and second sub-circuits, wherein the lateral isolating trench extends along the width of the semiconductor portions of the first and second sub-circuits, wherein one end of the isolating trench is adjacent the backend, and wherein the isolating trench is filled with an electrically isolating material.
Abstract:
In one or more embodiments, circuitry is provided for isolation and communication of signals between circuits operating in different voltage domains using capacitive coupling. The capacitive coupling is provided by one or more capacitive structures having a breakdown voltage that is defined by way of the various components and their spacing. The capacitive structures each include three capacitive plates arranged to have two plates located in an upper layer and one plate located in a lower layer. A communication signal can be transmitted via the capacitive coupling created between the lower plate and each of the upper plates, respectively.
Abstract:
The invention relates to a semiconductor device and an associated method for fabricating the semiconductor device. The device comprises: a substrate having a contact surface and a back surface separated by a total distance; a vertical device formed in the substrate and having first and second terminals on the contact surface; an isolation trench extending the total distance through the substrate between the contact surface and the back surface to electrically isolate the vertical device; and a terminal separation trench extending from the contact surface into the substrate and arranged to separate and define an electrical conduction path between the first and second terminals of the vertical device.
Abstract:
An isolated semiconductor circuit comprising: a first sub-circuit and a second sub-circuit; a backend that includes an electrically isolating connector between the first and second sub-circuits; a lateral isolating trench between the semiconductor portions of the first and second sub-circuits, wherein the lateral isolating trench extends along the width of the semiconductor portions of the first and second sub-circuits, wherein one end of the isolating trench is adjacent the backend, and wherein the isolating trench is filled with an electrically isolating material.
Abstract:
In one or more embodiments, circuitry is provided for isolation and communication of signals between circuits operating in different voltage domains using capacitive coupling. The capacitive coupling is provided by one or more capacitive structures having a breakdown voltage that is defined by way of the various components and their spacing. The capacitive structures each include three capacitive plates arranged to have two plates located in an upper layer and one plate located in a lower layer. A communication signal can be transmitted via the capacitive coupling created between the lower plate and each of the upper plates, respectively.
Abstract:
A circuit for protecting a transistor is disclosed. The circuit includes a temperature sensing device coupled to the transistor and a tunable clamping circuit connected between transistor terminals, wherein the tunable clamping circuit is configured to provide an adjustable clamping voltage. A temperature controller coupled to the temperature sensing device and the tunable clamping circuit is also included. The temperature controller is configured to trigger a change in a clamping voltage of the tunable clamping circuit based on a feedback from the temperature sensing device.
Abstract:
A high voltage electrical switch including: a plurality of series connected semiconductor switches; a plurality of rectifiers wherein each rectifier is connected to a semiconductor switch control input of one of the semiconductor switches; a radio frequency signal generator; and a plurality of galvanic isolators, wherein each galvanic isolator connects the radio frequency signal generator to one of the plurality of rectifiers, wherein the plurality of semiconductor switches are isolated from one another.