Abstract:
An image sensor includes a semiconductor layer with a plurality of photodiodes. A plurality of isolation structures is disposed in the back side of the semiconductor layer between individual photodiodes in the plurality of photodiodes. The plurality of isolation structures extend into the back side of the semiconductor layer a first depth and extend out of the back side of the semiconductor layer a first length. A plurality of light filters is disposed proximate to the back side of the semiconductor layer such that the plurality of isolation structures is disposed between individual light filters in the plurality of light filters. An antireflection coating is also disposed between the semiconductor layer and the plurality of light filters.
Abstract:
A method for manufacturing a backside illuminated color image sensor includes (a) modifying the frontside of an image sensor wafer, having pixel arrays, to produce electrical connections to the pixel arrays, wherein the electrical connections extend depth-wise into the image sensor wafer from the frontside, and (b) modifying the backside of the image sensor wafer to expose the electrical connections.
Abstract:
An image sensor includes a photosensitive region disposed within a semiconductor layer and a stress adjusting layer. The photosensitive region is sensitive to light incident through a first side of the image sensor to collect an image charge. The stress adjusting layer is disposed over the first side of the semiconductor layer to establish a stress characteristic that encourages photo-generated charge carriers to migrate towards the photosensitive region.
Abstract:
Embodiments of a semiconductor device that includes a semiconductor substrate and a cavity disposed in the semiconductor substrate that extends at least from a first side of the semiconductor substrate to a second side of the semiconductor substrate. The semiconductor device also includes an insulation layer disposed over the first side of the semiconductor substrate and coating sidewalls of the cavity. A conductive layer including a bonding pad is disposed over the insulation layer. The conductive layer extends into the cavity and connects to a metal stack disposed below the second side of the semiconductor substrate. A through silicon via pad is disposed below the second side of the semiconductor substrate and connected to the metal stack. The through silicon via pad is position to accept a through silicon via.
Abstract:
An image sensor includes a photosensitive region disposed within a semiconductor layer and a stress adjusting layer. The photosensitive region is sensitive to light incident through a first side of the image sensor to collect an image charge. The stress adjusting layer is disposed over the first side of the semiconductor layer to establish a stress characteristic that encourages photo-generated charge carriers to migrate towards the photosensitive region.
Abstract:
An image sensor includes a plurality of photodiodes disposed in a semiconductor material to convert image light into image charge. A floating diffusion is disposed proximate to the plurality of photodiodes to receive the image charge from the plurality of photodiodes. A plurality of transfer transistors is coupled to transfer the image charge from the plurality of photodiodes into the floating diffusion in response to a voltage applied to the gate terminal of the plurality of transfer transistors. A first trench isolation structure extends from a frontside of the semiconductor material into the semiconductor material and surrounds the plurality of photodiodes. A second trench isolation structure extends from a backside of the semiconductor material into the semiconductor material. The second trench isolation structure is disposed between individual photodiodes in the plurality of photodiodes.
Abstract:
Embodiments of a semiconductor device that includes a semiconductor substrate and a cavity disposed in the semiconductor substrate that extends at least from a first side of the semiconductor substrate to a second side of the semiconductor substrate. The semiconductor device also includes an insulation layer disposed over the first side of the semiconductor substrate and coating sidewalls of the cavity. A conductive layer including a bonding pad is disposed over the insulation layer. The conductive layer extends into the cavity and connects to a metal stack disposed below the second side of the semiconductor substrate. A through silicon via pad is disposed below the second side of the semiconductor substrate and connected to the metal stack. The through silicon via pad is position to accept a through silicon via.
Abstract:
An image sensor includes a semiconductor layer with a plurality of photodiodes. A plurality of isolation structures is disposed in the back side of the semiconductor layer between individual photodiodes in the plurality of photodiodes. The plurality of isolation structures extend into the back side of the semiconductor layer a first depth and extend out of the back side of the semiconductor layer a first length. A plurality of light filters is disposed proximate to the back side of the semiconductor layer such that the plurality of isolation structures is disposed between individual light filters in the plurality of light filters. An antireflection coating is also disposed between the semiconductor layer and the plurality of light filters.
Abstract:
A color filter array for use on a color image sensor includes an oxide grid having sidewalls arranged to define openings in the oxide grid. Each one of the openings is to be disposed over a corresponding pixel cell of the color image sensor. Oxide support structures are disposed in an interior region of each opening in the oxide grid over a corresponding pixel cell of the color image sensor. The openings in the oxide grid are filled with color filter material of a corresponding color filter. A surface tension between each oxide support structure and the surrounding color filter material of the color filter is adapted to provide uniform thickness for the color filters within the corresponding openings in the oxide grid.
Abstract:
An image sensor includes a plurality of photodiodes disposed in a semiconductor material to convert image light into image charge. A floating diffusion is disposed proximate to the plurality of photodiodes to receive the image charge from the plurality of photodiodes. A plurality of transfer transistors is coupled to transfer the image charge from the plurality of photodiodes into the floating diffusion in response to a voltage applied to the gate terminal of the plurality of transfer transistors. A first trench isolation structure extends from a frontside of the semiconductor material into the semiconductor material and surrounds the plurality of photodiodes. A second trench isolation structure extends from a backside of the semiconductor material into the semiconductor material. The second trench isolation structure is disposed between individual photodiodes in the plurality of photodiodes.