Abstract:
Electronic component with a support comprising a first inorganic insulating layer and a second inorganic insulating layer, between which a metal core is arranged, a first, a second and a third electrically conductive structure which are arranged on a top surface of the carrier, a first and a second electrical contact point and a thermal contact point, which are arranged on a bottom surface of the carrier, a component and an electrical protection element which are arranged on the side of the top surface of the carrier, in which the first electrically conductive structure is electrically conductively connected to the first electrical contact point, the second electrically conductive structure is electrically conductively connected to the second electrical contact point, the third electrically conductive structure is electrically conductively connected to the thermal contact point, the component is electrically conductively connected to the first and second electrically conductive structures, the electrical protection element is electrically conductively connected to the third electrically conductive structure and the first or second electrically conductive structure.
Abstract:
A light source is disclosed. In an embodiment a light source includes at least one first semiconductor emitter for generating first light, at least one second semiconductor emitter for generating second light, the second light having a different color than the first light, a light mixing body configured to produce a mixed light from the first and second lights and a detector on the light mixing body, the detector configured to determine a color locus of the mixed light, wherein the first and second semiconductor emitters are arranged along a line and have different distances from the detector, wherein the light mixing body is arranged on side surfaces of the first and second semiconductor emitters and in projection onto the side surfaces at least partially covers each of the side surfaces, so that the detector receives light from each of the first and second semiconductor emitters through the light mixing body.
Abstract:
In various embodiments, a method for producing an electronic component is provided. The method includes applying an adhesive layer to a carrier, initially curing the adhesive layer applied to the carrier, providing a chip, wherein the chip has a substrate and a layer sequence arranged on the substrate, laying the chip onto the initially cured adhesive layer by way of a top side of the layer sequence, embedding the chip into a shaped body, wherein the top side of the layer sequence and a first side of the shaped body lie substantially in a plane, separating the embedded chip from the adhesive layer and the carrier, and applying an electrically conductive structure to the first side of the shaped body, the shaped body forming a vertical electrical insulation between the electrically conductive structure and the substrate.