Abstract:
An apparatus and method are disclosed for efficiently using power at a voltage regulator, such as a synchronous buck converter. The synchronous buck converter includes a first switch and a second switch operated by a first control signal and a second control signal, respectively, where the first and second control signals have a corresponding phase difference. A logic circuit measures a duty cycle of an input pulse width modulated (PWM) signal against iterative changes of the phase difference between the first control signal and the second control signal. The logic circuit selects a phase difference corresponding to a minimum value of the PWM signal, thereby optimizing dead time at the synchronous buck converter. The logic circuit may include a Digital Pulse Width Modulator.
Abstract:
A switch-mode power supply is provided that includes a comparator for producing a pulse-width modulated (PWM) controller clock signal for controlling a power switch in the switch-mode power supply. The switch-mode power supply is configured to superimpose a DC-free version of a ramp voltage with an error voltage to produce a combined voltage. The comparator compares the combined voltage to a reference voltage to produce the PWM controller clock signal.
Abstract:
An inductor can include a first substrate, a magnetic piece, and a conductor. The first substrate can be formed within a second substrate. The magnetic piece can be connected to a first side of the first substrate. The conductor can be formed within the second substrate, on the second substrate, or both. The conductor can have an input and an output. The conductor can be configured to surround the first substrate without being in contact with the first substrate and without being in contact with the magnetic piece.
Abstract:
Operational mode changes in a system-on-a-chip (SoC) integrated circuit in a complex device such as a mobile phone cause spikes in current demand which can cause voltage droops that disrupt operation of the SoC. A hybrid parallel power supply capacitively couples a switching-mode power supply and a low-dropout voltage regulator in parallel to provide high efficiency and fast response times. The low-dropout voltage regulator may include a class-AB operational transconductance amplifier driving the coupling capacitor. The switching-mode power supply and the low-dropout voltage regulator can regulate their outputs to slightly difference voltage levels. This can allow the switching-mode power supply to supply most of the SoC's current demands.
Abstract:
Operational mode changes in a system-on-a-chip (SoC) integrated circuit in a complex device such as a mobile phone cause spikes in current demand which can cause voltage droops that disrupt operation of the SoC. A hybrid parallel power supply connects a switching-mode power supply and a low-dropout voltage regulator in parallel to provide high efficiency and fast response times. Integration of the voltage regulator on the SoC reduces parasitic impedance be between the voltage regulator and the load to aid in reducing voltage droops. The switching-mode power supply and the low-dropout voltage regulator can regulate their outputs to slightly difference voltage levels. This can allow the switching-mode power supply to supply most of the SoC's current demands.
Abstract:
A switch-mode power supply is provided that includes a comparator for producing a pulse-width modulated (PWM) controller clock signal for controlling a power switch in the switch-mode power supply. The switch-mode power supply is configured to superimpose a DC-free version of a ramp voltage with an error voltage to produce a combined voltage. The comparator compares the combined voltage to a reference voltage to produce the PWM controller clock signal.
Abstract:
An apparatus and method are disclosed for efficiently using power at a voltage regulator, such as a synchronous buck converter. The synchronous buck converter includes a first switch and a second switch operated by a first control signal and a second control signal, respectively, where the first and second control signals have a corresponding phase difference. A logic circuit measures a duty cycle of an input pulse width modulated (PWM) signal against iterative changes of the phase difference between the first control signal and the second control signal. The logic circuit selects a phase difference corresponding to a minimum value of the PWM signal, thereby optimizing dead time at the synchronous buck converter. The logic circuit may include a Digital Pulse Width Modulator.
Abstract:
An integrated circuit device, such as a system-on-a-chip (SOC) device that includes an integrated or embedded voltage regulator, comprises an integrated capacitor and an integrated inductor having a magnetic core that can be fabricated in the same process as the capacitive structure of the integrated capacitor.
Abstract:
A circuit including: a three-level buck converter having: a plurality of input switches and an inductor configured to receive a voltage from the plurality of input switches, the plurality of input switches coupled with a first capacitor and configured to charge and discharge the first capacitor; a second capacitor at an output of the buck converter; and a switched capacitor at an input node of the inductor, wherein the switched capacitor is smaller than either the first capacitor or the second capacitor.
Abstract:
A circuit including: a three-level buck converter having: a plurality of input switches and an inductor configured to receive a voltage from the plurality of input switches, the plurality of input switches coupled with a first capacitor and configured to charge and discharge the first capacitor; a second capacitor at an output of the buck converter; and a switched capacitor at an input node of the inductor, wherein the switched capacitor is smaller than either the first capacitor or the second capacitor.