Abstract:
Certain aspects of the present disclosure relate to a methods and apparatus for wireless communication. In one aspect, a method of wireless communication comprises assigning, by an access point, an interval of time for transmission on an unlicensed communication spectrum to a LTE-U device, and broadcasting an anchor signal during the interval of time on the unlicensed communication spectrum, the anchor signal comprising a paging indication for the LTE-U device. In another aspect, a method of wireless communication comprises determining, by a LTE-U device, an interval of time for reception of a paging indication on an unlicensed communication spectrum and receiving an anchor signal during the interval of time on the unlicensed communication spectrum, the anchor signal comprising the paging indication.
Abstract:
Certain aspects of the present disclosure relate to a methods and apparatus for wireless communication. In one aspect, a method of wireless communication comprises receiving, by a long term evolution unlicensed (LTE-U) device, a plurality of signals from an access point on an unlicensed communication spectrum. The method further comprises determining, by the device, whether a signal of the plurality of signals comprises a discovery signal. The method further comprises monitoring a radio link based on, the signal if the signal is determined to comprise the discovery signal.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may monitor a neighbor cell and report the result to a serving base station. Based on the report, the serving base station may identify an estimated discovery reference signal (DRS) transmission window of the neighbor cell. In some cases, the UE may estimate and report parameters of the neighbor DRS transmission window, and in other cases, the UE may make a measurement report and the base station may infer DRS transmission window parameters. The base station may then provide the UE with a DRS measurement timing configuration (DMTC) based on the estimated parameters of the neighbor cell so that the UE may monitor the neighbor cell and the serving cell in an efficient manner. For example, the UE may conserve battery life by refraining from monitoring DRS during periods when a DRS transmission is not likely.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may monitor a neighbor cell and report the result to a serving base station. Based on the report, the serving base station may identify an estimated discovery reference signal (DRS) transmission window of the neighbor cell. In some cases, the UE may estimate and report parameters of the neighbor DRS transmission window, and in other cases, the UE may make a measurement report and the base station may infer DRS transmission window parameters. The base station may then provide the UE with a DRS measurement timing configuration (DMTC) based on the estimated parameters of the neighbor cell so that the UE may monitor the neighbor cell and the serving cell in an efficient manner. For example, the UE may conserve battery life by refraining from monitoring DRS during periods when a DRS transmission is not likely.
Abstract:
Methods, systems, and devices for wireless communication are described. A base station may transmit a configuration for enhanced paging to a UE being served by a cell over a shared frequency band. The enhanced paging may include multiple paging intervals for each paging cycle. The UE may enable reception for a paging interval and determine whether the UE receives a downlink transmission. The UE may lengthen a paging interval or enable reception during a second paging interval based in part on determining whether the UE receives a downlink transmission. In some examples, the UE may receive a paging queue status indication indicating that paging information will be transmitted during a paging interval or a later interval, or indicating that no paging information is present at a serving cell.
Abstract:
Certain aspects of the present disclosure relate to a methods and apparatus for wireless communication. In one aspect, a method of wireless communication comprises receiving, by a long term evolution unlicensed (LTE-U) device, a plurality of signals from an access point on an unlicensed communication spectrum. The method further comprises determining, by the device, whether a signal of the plurality of signals comprises a discovery signal. The method further comprises monitoring a radio link based on, the signal if the signal is determined to comprise the discovery signal.
Abstract:
Systems and methods are provided for facilitating base station identity discovery in a wireless communications system. This may be achieved, for example, by exchanging with a User Equipment (UE) a message including a Universal Terrestrial Radio Access Network Radio Network Temporary Identifier (U-RNTI) of the UE, wherein the U-RNTI comprises an indicator representative of a base station identifier of a Home NodeB (HNB) associated with the UE.
Abstract:
Techniques are described for wireless communication. A method for wireless communication at a user equipment (UE) includes receiving, by the UE, a first transmission on a beam over a radio frequency spectrum during a first time interval. The first transmission includes an indication of a subsequent physical downlink control channel (PDCCH) transmission on the beam. The indication includes information about a PDCCH in a second time interval subsequent to the first time interval. The method also includes configuring a power saving state of the UE based at least in part on the indication. A method for wireless communication at a network access device includes transmitting the first transmission to at least one UE, and transmitting the PDCCH during the second time interval.
Abstract:
Methods and apparatuses are provided for causing active hand-in of a device from a macrocell base station to a femto node, which can be an inter-frequency hand-in. The femto node can broadcast a beacon, which can be received and reported by a device to a source base station along with one or more parameters. The source base station can communicate a handover message to the femto node or a related femto gateway along with the one or more parameters. The femto node or femto gateway can disambiguate the intended target femto node based in part on the one or more parameters, which can include applying one or more filters. Applying the one or more filters may include applying an UL RSSI filter to the one or more femto nodes to determine whether presence of the device causes a rise in UL RSSI measured at the one or more femto nodes.
Abstract:
Methods, systems, and devices for wireless communication are described. A base station may transmit a configuration for enhanced paging to a UE being served by a cell over a shared frequency band. The enhanced paging may include multiple paging intervals for each paging cycle. The UE may enable reception for a paging interval and determine whether the UE receives a downlink transmission. The UE may lengthen a paging interval or enable reception during a second paging interval based in part on determining whether the UE receives a downlink transmission. In some examples, the UE may receive a paging queue status indication indicating that paging information will be transmitted during a paging interval or a later interval, or indicating that no paging information is present at a serving cell.