Abstract:
The present disclosure relates to a process for preparing of high thermal conductivity and high heat capacity oriented ultrahigh molecular weight polyethylene (UHMWPE) product. The process includes feeding UHMWPE through rollers to obtain a pre-laminate which is further hot stretched to obtain the oriented UHMWPE product having high thermal conductivity and high heat capacity. The temperature of stretching is maintained below the melt temperature of the UHMWPE throughout the entire process. There is also provided a high thermal conductivity and high heat capacity oriented UHMWPE product prepared by the process of the present disclosure. The oriented UHMWPE product is characterized in the axial thermal conductivity in the range of 70 to 200 W/mK, transverse direction thermal conductivity in the range of 0.022 to 0.045 W/mK and heat capacity in the range of 6 to 25 MJ/m3K.
Abstract:
In accordance with the present disclosure, there is provided a solid state graft copolymerization process for the preparation of disentangled ultrahigh molecular weight polyethylene graft copolymers in which disentangled ultrahigh molecular weight polyethylene is admixed with at least one functional monomer and a free radical initiator to obtain a mixture; and the mixture thus obtained is subjected to solid state polymerization to obtain a graft copolymer of disentangled ultrahigh molecular weight polyethylene. The graft copolymers of disentangled ultrahigh molecular weight polyethylene shows better crystallization temperature that ranges between 117° C. to 121° C. and improved decomposition temperature (T100) that ranges between 460° C. to 480° C.
Abstract:
The present disclosure relates to a compact polymer gel consisting of ultrahigh molecular weight polyethylene (UHMWPE), at least one nucleator, at least one filler and at least one fluid medium. The present disclosure also provides a process for the preparation of the compact polymeric gel and fibers from the compact polymeric gel. The fibers prepared in accordance with the present process have tensile strength ranging from 2.5 to 10 GPa and tensile modulus ranging from 110 to 300 GPa.
Abstract:
The present disclosure relates to a process for the preparation of high strength and high modulus polyethylene products/laminates consisting of steps such as providing a pre-dried, at least 50% disentangled ultra-high molecular weight polyethylene (UHMWPE) powder, feeding the UHMWPE powder having temperature ranging from −15° C. to 50° C., at the nip of at least one pair of heated, polished counter rotating calendaring rollers, rotating at different roller speeds to obtain at least one pre-laminate and hot stretching the pre-laminate(s) at a pre-determined temperature and pre-determined stretching speed to obtain high strength laminates. The laminates provided by the present disclosure have tensile strength ranging between 0.5 GPa and 3.0 GPa and tensile modulus ranging between 40 GPa and 200 GPa.
Abstract:
In the present disclosure an easily processable ultrahigh molecular weight polyethylene and a process for preparation thereof is disclosed wherein the easy processable ultrahigh molecular weight polyethylene is prepared by melt mixing a first ultrahigh molecular weight polyethylene having poor process-ability and a second ultrahigh molecular weight polyethylene along with a minimal amount of solvent. The easily processable ultrahigh molecular weight polyethylene is melt processable below its melting point and requires lesser compression molding time as compared to the first ultrahigh molecular weight polyethylene.
Abstract:
The present disclosure relates to a compact polymer gel consisting of ultrahigh molecular weight polyethylene (UHMWPE), at least one nucleator, at least one filler and at least one fluid medium. The present disclosure also provides a process for the preparation of the compact polymeric gel and fibers from the compact polymeric gel. The fibers prepared in accordance with the present process have tensile strength ranging from 2.5 to 10 GPa and tensile modulus ranging from 110 to 300 GPa.
Abstract:
The present disclosure relates to a compact polymer gel consisting of disentangled ultrahigh molecular weight polyethylene (dis-UHMWPE), at least one nucleator, at least one filler and at least one fluid medium. The present disclosure also provides a process for the preparation of the compact polymeric gel and fibers from the compact polymeric gel of both low and high denier values. The fibers prepared in accordance with the present process have tensile strength ranging from 2.5 to 13 GPa, tensile modulus ranging from 100 to 270 GPa.
Abstract:
A catalyst composition and a process for obtaining a colored olefin polymer are disclosed. The composition comprises a Ziegler-Natta catalyst and an additive component comprising a colorant. The catalyst composition enables a directly colored polymer to be prepared. The colored polymer has a homogeneous dispersion of the colorant in it and thus has no color defects.
Abstract:
The present disclosure provides a heterogeneous Ziegler-Natta catalyst system to be used in the preparation of ultra-high molecular weight polymers (UHMWP). The system includes at least one procatalyst, at least one co-catalyst, at least one hydrocarbon medium and at least one external donor, wherein the ratio of elemental magnesium to elemental titanium to halide, in the procatalyst, is 1:1.3:3.7; the ratio of elemental aluminum, present in the co-catalyst to elemental titanium, present in the procatalyst, ranges between 6:1 and 12:1; and the ratio of elemental silicon, present in the external donor to elemental titanium, present in the procatalyst, ranges between 1:10 and 10:1. The present disclosure also provides a process for preparation of UHMWPE using the heterogeneous Ziegler-Natta catalyst system of the present disclosure.
Abstract:
A polymer composition has homogenous dispersion of a first polymer with a second polymer. The first polymer includes but is not limited to ethylene based homopolymer and ethylene based copolymer. The second polymer has molecular weight higher than the molecular weight of the first polymer and heat of fusion greater than 200 J/g.