Abstract:
Disclosed are catalysts comprised of platinum and gold. The catalysts are generally useful for the selective oxidation of compositions comprised of a primary alcohol group and at least one secondary alcohol group wherein at least the primary alcohol group is converted to a carboxyl group. More particularly, the catalysts are supported catalysts including particles comprising gold and particles comprising platinum, wherein the molar ratio of platinum to gold is in the range of about 100:1 to about 1:4, the platinum is essentially present as Pt(0) and the platinum-containing particles are of a size in the range of about 2 to about 50 nm. Also disclosed are methods for the oxidative chemocatalytic conversion of carbohydrates to carboxylic acids or derivatives thereof. Additionally, methods are disclosed for the selective oxidation of glucose to glucaric acid or derivatives thereof using catalysts comprising platinum and gold. Further, methods are disclosed for the production of such catalysts.
Abstract:
The present disclosure relates generally to water concentration reduction processes within an adipic acid process. The present invention also includes process for converting a glucose-containing feed derived from a carbohydrate source to an adipic acid product wherein the process includes the steps of: converting glucose in the feed to a reaction product including a hydrodeoxygenation substrate and a first concentration of water; reducing the concentration of water in the reaction product to produce a feedstock including the hydrodeoxygenation substrate and second concentration of water, wherein the second concentration of water is less than the first concentration of water; and converting at least a portion of the hydrodeoxygenation substrate in the feedstock to an adipic acid product. Processes are also disclosed for producing hexamethylene diamine and caprolactam from the adipic acid product.
Abstract:
The present invention generally relates to processes for the chemocatalytic conversion of a glucose source to an adipic acid product. The present invention includes processes for the conversion of glucose to an adipic acid product via glucaric acid or derivatives thereof. The present invention also includes processes comprising catalytic oxidation of glucose to glucaric acid or derivative thereof and processes comprising the catalytic hydrodeoxygenation of glucaric acid or derivatives thereof to an adipic acid product. The present invention also includes products produced from adipic acid product and processes for the production thereof from such adipic acid product.
Abstract:
The present disclosure relates to processes for the separation of at least one di-carboxylic acid compound and/or at least one mono-carboxylic acid compound from a mixture. The separation processes involve contacting the mixture with an ion exchange medium to cause at least one of the mono- and/or di-carboxylic acid compounds to be retained by the medium, eluting at least one of the mono-carboxylic acid compound or the di-carboxylic acid compound using an eluent to form an eluate, wherein the eluate is enriched in at least one of the mono-carboxylic acid compound or di-carboxylic acid relative to the concentration of such eluted acid in the mixture having contacted the medium and wherein the eluent comprises an organic acid. The process has particular utility in the production of di-carboxylic acid compounds from glucose.
Abstract:
The present invention generally relates to processes for the chemocatalytic conversion of a glucose source to an adipic acid product. The present invention includes processes for the conversion of glucose to an adipic acid product via glucaric acid or derivatives thereof. The present invention also includes processes comprising catalytic oxidation of glucose to glucaric acid or derivative thereof and processes comprising the catalytic hydrodeoxygenation of glucaric acid or derivatives thereof to an adipic acid product. The present invention also includes products produced from adipic acid product and processes for the production thereof from such adipic acid product.
Abstract:
Processes for separating a di-carboxylic acid or salt thereof from a mixture containing the di-carboxylic acid or salt thereof and one or more other components are provided. Also separation media useful for these separation processes is provided. In particular, processes for preparing an aldaric acid are described, such as glucaric acid from glucose, which includes separating the aldaric acid from the reaction product. Also, various glucaric acid products are described.
Abstract:
Disclosed are catalysts comprised of platinum and gold. The catalysts are generally useful for the selective oxidation of compositions comprised of a primary alcohol group and at least one secondary alcohol group wherein at least the primary alcohol group is converted to a carboxyl group. More particularly, the catalysts are supported catalysts including particles comprising gold and particles comprising platinum, wherein the molar ratio of platinum to gold is in the range of about 100:1 to about 1:4, the platinum is essentially present as Pt(0) and the platinum-containing particles are of a size in the range of about 2 to about 50 nm. Also disclosed are methods for the oxidative chemocatalytic conversion of carbohydrates to carboxylic acids or derivatives thereof. Additionally, methods are disclosed for the selective oxidation of glucose to glucaric acid or derivatives thereof using catalysts comprising platinum and gold. Further, methods are disclosed for the production of such catalysts.
Abstract:
Processes for separating a di-carboxylic acid or salt thereof from a mixture containing the di-carboxylic acid or salt thereof and one or more other components are provided. Also separation media useful for these separation processes is provided. In particular, processes for preparing an aldaric acid are described, such as glucaric acid from glucose, which includes separating the aldaric acid from the reaction product. Also, various glucaric acid products are described.
Abstract:
The present invention generally relates to processes for the chemocatalytic conversion of a glucose source to an adipic acid product. The present invention includes processes for the conversion of glucose to an adipic acid product via glucaric acid or derivatives thereof. The present invention also includes processes comprising catalytic oxidation of glucose to glucaric acid or derivative thereof and processes comprising the catalytic hydrodeoxygenation of glucaric acid or derivatives thereof to an adipic acid product. The present invention also includes products produced from adipic acid product and processes for the production thereof from such adipic acid product.
Abstract:
Processes for separating a di-carboxylic acid or salt thereof from a mixture containing the di-carboxylic acid or salt thereof and one or more other components are provided. Also separation media useful for these separation processes is provided. In particular, processes for preparing an aldaric acid are described, such as glucaric acid from glucose, which includes separating the aldaric acid from the reaction product. Also, various glucaric acid products are described.