摘要:
Multiple-layer films in integrated circuit processing may be formed by the phase segregation of a single composition formed above a semiconductor substrate. The composition is then induced to phase segregate into at least a first continuous phase and a second continuous phase. The composition may be formed of two or more components that phase segregate into different continuous layers. The composition may also be a single component that breaks down upon activation into two or more components that phase segregate into different continuous layers. Phase segregation may be used to form, for example, a sacrificial light absorbing material (SLAM) and a developer resistant skin, a dielectric layer and a hard mask, a photoresist and an anti-reflective coating (ARC), a stress buffer coating and a protective layer on a substrate package, and light interference layers.
摘要:
In one embodiment, the present invention includes introducing a precursor containing hydrocarbon substituents and optionally a second conventional or hydrocarbon-containing precursor into a vapor deposition apparatus; and forming a dielectric layer having the hydrocarbon substituents on a substrate within the vapor deposition apparatus from the precursor(s). In certain embodiments, at least a portion of the hydrocarbon substituents may be later removed from the dielectric layer to reduce density thereof.
摘要:
A deliberately engineered placement and size constraint (molecular weight distribution) of photoacid generators, solubility switches, photoimageable species, and quenchers forms individual pixels within a photoresist. Upon irradiation, a self-contained reaction occurs within each of the individual pixels that were irradiated to pattern the photoresist. These pixels may take on a variety of forms including a polymer chain, a bulky cluster, a micelle, or a micelle formed of several polymer chains. Furthermore, these pixels may be designed to self-assemble onto the substrate on which the photoresist is applied.
摘要:
Methods and systems for the concentration and removal of metal ions from aqueous solutions are described, comprising treating the aqueous solutions with photoswitchable ionophores.
摘要:
A substrate patterning integration is disclosed to address structural and process limitations of conventional resist patterning over hardmask techniques. A resist layer positioned adjacent a substrate layer is patterned, subsequent to which a hardmask layer is deposited. The hardmask layer may be thinned to expose remaining portions of the patterned resist layer for removal by chemical treatment to expose portions of the underlying substrate layer into which the pattern may be transferred using wet or dry chemical etch techniques.