Abstract:
A thin film transistor substrate includes a base substrate, an active pattern disposed on the base substrate, a gate insulation pattern disposed on the active pattern, a gate electrode disposed on the gate insulation pattern and overlapping the channel, and a light-blocking pattern disposed between the base substrate and the active pattern and having a size greater than the active pattern. The active pattern includes a source electrode, a drain electrode, and a channel disposed between the source electrode and the drain electrode.
Abstract:
A thin film transistor substrate includes a base substrate, an active pattern disposed on the base substrate, a gate insulation pattern disposed on the active pattern, a gate electrode disposed on the gate insulation pattern and overlapping the channel, and a light-blocking pattern disposed between the base substrate and the active pattern and having a size greater than the active pattern. The active pattern includes a source electrode, a drain electrode, and a channel disposed between the source electrode and the drain electrode.
Abstract:
A thin film transistor substrate includes the following elements: a base substrate, a data line disposed on the base substrate, a source electrode contacting the data line, a drain electrode spaced from the source electrode, a channel disposed between the source electrode and the drain electrode, a pixel electrode electrically connected to the drain electrode, a gate insulation pattern disposed on the channel, and a gate electrode disposed on the gate insulation pattern.
Abstract:
A thin film transistor array panel includes: a gate wiring layer disposed on a substrate; an oxide semiconductor layer disposed on the gate wiring layer; and a data wiring layer disposed on the oxide semiconductor layer, in which the data wiring layer includes a main wiring layer including copper and a capping layer disposed on the main wiring layer and including a copper alloy.
Abstract:
A thin film transistor substrate includes a base substrate, an active pattern, a gate insulation pattern and a gate electrode. The active pattern is disposed on the base substrate. The active pattern includes a source electrode, a drain electrode, and a channel disposed between the source electrode and the drain electrode. The gate insulation pattern and the gate electrode overlap with the channel. The gate insulation pattern is disposed between the channel and the gate electrode. The source electrode and the drain electrode each include a fluorine deposition layer.
Abstract:
A thin film transistor including a gate electrode, a semiconductor layer, a gate insulating layer, a source electrode, a drain electrode and a graphene pattern. The semiconductor layer overlaps with the gate electrode. The gate insulating layer is disposed between the gate electrode and the semiconductor layer. The source electrode overlaps with the semiconductor layer. The drain electrode overlaps with the semiconductor layer. The drain electrode is spaced apart from the source electrode. The graphene pattern is disposed between the semiconductor layer and at least one of the source electrode and the drain electrode.
Abstract:
A thin film transistor substrate includes a base substrate, an active pattern disposed on the base substrate, a gate insulation pattern disposed on the active pattern, a gate electrode disposed on the gate insulation pattern and overlapping the channel, and a light-blocking pattern disposed between the base substrate and the active pattern and having a size greater than the active pattern. The active pattern includes a source electrode, a drain electrode, and a channel disposed between the source electrode and the drain electrode.
Abstract:
A thin film transistor array panel includes: a gate wiring layer disposed on a substrate; an oxide semiconductor layer disposed on the gate wiring layer; and a data wiring layer disposed on the oxide semiconductor layer, in which the data wiring layer includes a main wiring layer including copper and a capping layer disposed on the main wiring layer and including a copper alloy.
Abstract:
A display substrate includes a base substrate, a data line disposed on the base substrate, a gate line crossing the data line, a first insulation layer disposed on the base substrate, an active pattern disposed on the first insulation layer and comprising a channel comprising an oxide semiconductor, a source electrode connected to the channel, and a drain electrode connected to the channel, a second insulation layer disposed on the active pattern, and contacting to the source electrode and the drain electrode, a gate electrode disposed on the second insulation layer, and overlapping with the channel, a passivation layer disposed on the gate electrode and the second insulation layer, and a pixel electrode electrically connected to the drain electrode through a first contact hole formed through the passivation layer and the second insulation layer.
Abstract:
A thin film transistor display panel includes: a gate electrode, a source electrode and a drain electrode which are included in a thin film transistor on a substrate; a data line connected to the source electrode; a pixel link member connecting the drain electrode to a pixel electrode; and a gate pad connected to the gate electrode through a gate line and including a first gate subpad, a second gate subpad and a gate pad link member, in which the pixel link member and the gate pad link member are substantially same in thickness.