Abstract:
Halogen-free resin composition, prepreg, and laminate for printed circuits. Based on 100 parts by weight of organic solid matter, it comprises: (A) dicyclopentadiene-type benzoxazine resin: 50-80 parts by weight; (B) dicyclopentadiene-type epoxy resin; (C) dicyclopentadiene-type novolac hardener; (D) phosphorus-containing flame retardant. The dicyclopentadiene structure in (A) decreases the dielectric constant, dielectric dissipation value, and water absorption of cured products and maintain adhesive force as the main resin; adding (B) can improve the tenacity of cured products and maintain low water absorption and excellent dielectric performances; Taking the dicyclopentadiene-type novolac as the hardener can sufficiently exert the advantage of excellent dielectric performances and good thermal and moisture resistance resulted from the dicyclopentadiene-containing structure. The prepreg above and the laminate for printed circuits using the prepreg have low dielectric constant, low dielectric dissipation factor, low water absorption, high adhesion, high thermal resistance and good flame retardancy, processability and chemical resistance.
Abstract:
The present invention relates to a halogen-free thermosetting resin composition, and also a prepreg and a laminate for printed circuit prepared from the halogen-free thermosetting resin composition. The halogen-free thermosetting resin composition comprises, based on 100 parts by weight of organic solids, (A) from 30 to 60 parts by weight of a halogen-free epoxy resin, (B) from 5 to 30 parts by weight of a first curing agent of phosphorus-containing bisphenol, (C) from 5 to 30 parts by weight of a second curing agent of alkylphenol novolac, and (D) a phosphorus-containing flame retardant. The prepreg and laminate for printed circuit prepared from the halogen-free thermosetting resin composition according to the present invention have high glass transition temperature, excellent dielectric properties, low water absorption, high thermal resistance and better process workability, and can fulfill halogen-free flame retardance and achieve the grade of UL94 V-0.
Abstract:
The present invention relates to a halogen-free thermosetting resin composition, and also a prepreg and a laminate for printed circuit prepared from the halogen-free thermosetting resin composition. The halogen-free thermosetting resin composition comprises, based on 100 parts by weight of organic solids, (A) from 30 to 60 parts by weight of a halogen-free epoxy resin, (B) from 5 to 30 parts by weight of a first curing agent of phosphorus-containing bisphenol, (C) from 5 to 30 parts by weight of a second curing agent of alkylphenol novolac, and (D) a phosphorus-containing flame retardant. The prepreg and laminate for printed circuit prepared from the halogen-free thermosetting resin composition according to the present invention have high glass transition temperature, excellent dielectric properties, low water absorption, high thermal resistance and better process workability, and can fulfill halogen-free flame retardance and achieve the grade of UL94 V-0.
Abstract:
The present invention relates to a halogen-free thermosetting resin composition and also a prepreg and a laminate for printed circuits prepared from the halogen-free thermosetting resin composition. The halogen-free thermosetting resin composition comprises, based on 100 parts by weight of organic solids, (A) from 30 to 60 parts by weight of a halogen-free epoxy resin, (B) from 20 to 50 parts by weight of a compound containing dihydrobenzoxazine ring, (C) from 10 to 40 parts by weight of a phosphorus-containing bisphenol curing agent. The prepreg and laminate for printed circuits prepared from the halogen-free thermosetting resin composition according to the present invention have high glass transition temperature, excellent dielectric properties, low water absorption, high thermal resistance and better processability, and can fulfill halogen-free flame retardancy and achieve UL94 V-0 grade.
Abstract:
The present invention relates to a halogen-free thermosetting resin composition, and also a prepreg and a laminate for printed circuit prepared from the halogen-free thermosetting resin composition. The halogen-free thermosetting resin composition comprises, based on 100 parts by weight of organic solids, (A) from 30 to 60 parts by weight of a halogen-free epoxy resin, (B) from 5 to 30 parts by weight of a first curing agent of phosphorus-containing bisphenol, (C) from 5 to 30 parts by weight of a second curing agent of dicyclopentadiene novolac, and (D) a phosphorus-containing flame retardant. The prepreg and laminate for printed circuit prepared from the halogen-free thermosetting resin composition according to the present invention have high glass transition temperature, excellent dielectric properties, low water absorption, high thermal resistance and better process workability, and can fulfill halogen-free flame retardance and achieve the grade of UL94 V-0.
Abstract:
Halogen-free resin composition, prepreg, and laminate for printed circuits. Based on 100 parts by weight of organic solid matter, it comprises: (A) dicyclopentadiene-type benzoxazine resin: 50-80 parts by weight; (B) dicyclopentadiene-type epoxy resin; (C) dicyclopentadiene-type novolac hardener; (D) phosphorus-containing flame retardant. The dicyclopentadiene structure in (A) decreases the dielectric constant, dielectric dissipation value, and water absorption of cured products and maintain adhesive force as the main resin; adding (B) can improve the tenacity of cured products and maintain low water absorption and excellent dielectric performances; Taking the dicyclopentadiene-type novolac as the hardener can sufficiently exert the advantage of excellent dielectric performances and good thermal and moisture resistance resulted from the dicyclopentadiene-containing structure. The prepreg above and the laminate for printed circuits using the prepreg have low dielectric constant, low dielectric dissipation factor, low water absorption, high adhesion, high thermal resistance and good flame retardancy, processability and chemical resistance.
Abstract:
The technology discloses a halogen-free resin composition and a prepreg and a laminate used for a printed circuit. The resin composition comprises: alkyl phenol epoxy resin; benzoxazine resin, alkyl phenol novolac curing agent, and phosphorus-containing flame retardant. The alkyl phenol epoxy resin has many alkyl branched chains in its molecular structure, making the composition have excellent dielectric properties, a higher glass transition temperature, low water absorption, and good heat resistance. Mixing benzoxazine resin into the composition can further reduce dielectric constant, dielectric loss value and water absorption of the cured product. With an alkyl phenol novolac curing agent, the molecular structure will have many alkyls, excellent dielectric properties and low water absorption. A prepreg and a laminate used for printed circuit prepared using the resin composition have low dielectric constants, dielectric loss factors, and water absorption, high dimensional stability, high thermal resistance and good flame retardancy, processability and chemical resistance.
Abstract:
The present invention relates to a halogen-free thermosetting resin composition and also a prepreg and a laminate for printed circuits prepared from the halogen-free thermosetting resin composition. The halogen-free thermosetting resin composition comprises, based on 100 parts by weight of organic solids, (A) from 30 to 60 parts by weight of a halogen-free epoxy resin, (B) from 20 to 50 parts by weight of a compound containing dihydrobenzoxazine ring, (C) from 10 to 40 parts by weight of a phosphorus-containing bisphenol curing agent. The prepreg and laminate for printed circuits prepared from the halogen-free thermosetting resin composition according to the present invention have high glass transition temperature, excellent dielectric properties, low water absorption, high thermal resistance and better processability, and can fulfill halogen-free flame retardancy and achieve UL94 V-0 grade.
Abstract:
Halogen-free resin composition, prepreg, and laminate for printed circuits using same. Based on 100 parts by weight of organic solid matter, the resin composition comprises: (A) bisphenol-type epoxy resin: 30˜60 parts by weight; (B) benzoxazine resin: 5˜45 parts by weight; (C) alkyl phenol novolac hardener: 10˜30 parts by weight; (D) phosphorus-containing flame retardant. The bisphenol-type epoxy resin, with numerous alkyl branched chains and benzene rings in its structure, makes the composition possess high glass transition temperature, low water absorption, good thermal resistance, and excellent dielectric properties. Taking the alkyl phenol novolac as the hardener can sufficiently exert the advantages of excellent dielectric properties and low water absorption resulted from containing numerous alkyls. The prepreg and laminate for printed circuits made from halogen-free resin composition have high glass transition temperature, low dielectric constant, low dielectric dissipation factor, low water absorption, high thermal resistance, and good flame retardancy, processability and chemical resistance.
Abstract:
Halogen-free resin composition, prepreg, and laminate for printed circuits using same. Based on 100 parts by weight of organic solid matter, the resin composition comprises: (A) bisphenol-type epoxy resin: 30˜60 parts by weight; (B) benzoxazine resin: 5˜45 parts by weight; (C) alkyl phenol novolac hardener: 10˜30 parts by weight; (D) phosphorus-containing flame retardant. The bisphenol-type epoxy resin, with numerous alkyl branched chains and benzene rings in its structure, makes the composition possess high glass transition temperature, low water absorption, good thermal resistance, and excellent dielectric properties. Taking the alkyl phenol novolac as the hardener can sufficiently exert the advantages of excellent dielectric properties and low water absorption resulted from containing numerous alkyls. The prepreg and laminate for printed circuits made from halogen-free resin composition have high glass transition temperature, low dielectric constant, low dielectric dissipation factor, low water absorption, high thermal resistance, and good flame retardancy, processability and chemical resistance.